scispace - formally typeset
Open AccessJournal ArticleDOI

How do lncRNAs regulate transcription

TLDR
Recent progress in elucidating the molecular mechanisms by which lncRNAs modulate gene expression is reviewed, including the act of lnc RNA transcription rather than the lncRNA product that appears to be regulatory.
Abstract
It has recently become apparent that RNA, itself the product of transcription, is a major regulator of the transcriptional process. In particular, long noncoding RNAs (lncRNAs), which are so numerous in eukaryotes, function in many cases as transcriptional regulators. These RNAs function through binding to histone-modifying complexes, to DNA binding proteins (including transcription factors), and even to RNA polymerase II. In other cases, it is the act of lncRNA transcription rather than the lncRNA product that appears to be regulatory. We review recent progress in elucidating the molecular mechanisms by which lncRNAs modulate gene expression and future opportunities in this research field.

read more

Citations
More filters
Journal ArticleDOI

RNA delivery by extracellular vesicles in mammalian cells and its applications.

TL;DR: This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications.
Journal ArticleDOI

Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease

TL;DR: Key aspects of lncRNA biology are reviewed, focusing on their role as regulatory elements in gene expression modulation during physiological and disease processes, with implications in host and pathogens physiology, and their role in immune response modulation.
Journal ArticleDOI

Non-Coding RNAs and their Integrated Networks.

TL;DR: This review discusses the distinct types of ncRNAs, including housekeeping n cRNAs and regulatory nc RNAs, their versatile functions and interactions, transcription, translation, and modification, and summarizes the integrated networks of n cRNA interactions, providing a comprehensive landscape of nCRNAs regulatory roles.
Journal ArticleDOI

Long non-coding RNA: Classification, biogenesis and functions in blood cells.

TL;DR: The current status of knowledge on lncRNAs classification, biogenesis and its role in blood cells is summarized.
Journal ArticleDOI

Emerging roles of lncRNAs in the post-transcriptional regulation in cancer.

TL;DR: In this paper, the authors discuss latest developments in lncRNA-meditated gene expression at the post-transcriptional level, including gene splicing, mRNA stability, protein stability and nuclear trafficking.
References
More filters
Journal ArticleDOI

X chromosomal regulation in flies: when less is more

TL;DR: It is becoming increasingly clear that although the X chromosome achieves male specific regulation via the MSL complex members, a number of general factors also impinge on this regulation.
Journal ArticleDOI

Long non-coding RNA RBMY2FP promotes proliferation of male hepatocellular carcinoma by directing DNA methylation and activating RBMY1A1 via DNMT1

TL;DR: Male specific Y chromosome transcripts through RNA sequence are screened and a long non-coding RNA RBMY2FP is discovered that is specifically expressed in about 1/3 male HCC tissues, with no expression in adjacent livers, which may partially explain the male preference of HCC and potentially contribute to HCC treatment.
Related Papers (5)

Landscape of transcription in human cells

Sarah Djebali, +87 more
- 06 Sep 2012 -