scispace - formally typeset
Open AccessJournal ArticleDOI

Smoking Cessation Induces Profound Changes in the Composition of the Intestinal Microbiota in Humans

TLDR
The results indicate that smoking is an environmental factor modulating the composition of human gut microbiota, suggesting a potential pathogenetic link between weight gain and smoking cessation and giving rise to a potential association of smoking status and the course of IBD.
Abstract
Background The human intestinal microbiota is a crucial factor in the pathogenesis of various diseases, such as metabolic syndrome or inflammatory bowel disease (IBD). Yet, knowledge about the role of environmental factors such as smoking (which is known to influence theses aforementioned disease states) on the complex microbial composition is sparse. We aimed to investigate the role of smoking cessation on intestinal microbial composition in 10 healthy smoking subjects undergoing controlled smoking cessation. Methods During the observational period of 9 weeks repetitive stool samples were collected. Based on abundance of 16S rRNA genes bacterial composition was analysed and compared to 10 control subjects (5 continuing smokers and 5 non-smokers) by means of Terminal Restriction Fragment Length Polymorphism analysis and high-throughput sequencing. Results Profound shifts in the microbial composition after smoking cessation were observed with an increase of Firmicutes and Actinobacteria and a lower proportion of Bacteroidetes and Proteobacteria on the phylum level. In addition, after smoking cessation there was an increase in microbial diversity. Conclusions These results indicate that smoking is an environmental factor modulating the composition of human gut microbiota. The observed changes after smoking cessation revealed to be similar to the previously reported differences in obese compared to lean humans and mice respectively, suggesting a potential pathogenetic link between weight gain and smoking cessation. In addition they give rise to a potential association of smoking status and the course of IBD.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Introduction to the human gut microbiota

TL;DR: This review summarises the current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host–microbe interactions.
Journal ArticleDOI

From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways

TL;DR: Roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness are examined; how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies is discussed.
Journal ArticleDOI

Proteobacteria: A Common Factor in Human Diseases

TL;DR: This review highlights the latest findings on the role of Proteobacteria not only in intestinal but also in extraintestinal diseases, and demonstrates an increased abundance of members belonging to this phylum in such conditions.
References
More filters
Journal ArticleDOI

An obesity-associated gut microbiome with increased capacity for energy harvest

TL;DR: It is demonstrated through metagenomic and biochemical analyses that changes in the relative abundance of the Bacteroidetes and Firmicutes affect the metabolic potential of the mouse gut microbiota and indicates that the obese microbiome has an increased capacity to harvest energy from the diet.
Journal ArticleDOI

Microbial ecology: Human gut microbes associated with obesity

TL;DR: It is shown that the relative proportion of Bacteroidetes is decreased in obese people by comparison with lean people, and that this proportion increases with weight loss on two types of low-calorie diet.
Journal ArticleDOI

Diversity of the human intestinal microbial flora.

TL;DR: A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms, and significant intersubject variability and differences between stool and mucosa community composition were discovered.
Journal ArticleDOI

Obesity alters gut microbial ecology

TL;DR: Analysis of the microbiota of genetically obese ob/ob mice, lean ob/+ and wild-type siblings, and their ob/+ mothers, all fed the same polysaccharide-rich diet, indicates that obesity affects the diversity of the gut microbiota and suggests that intentional manipulation of community structure may be useful for regulating energy balance in obese individuals.
Related Papers (5)

Structure, function and diversity of the healthy human microbiome

Curtis Huttenhower, +253 more
- 14 Jun 2012 -