scispace - formally typeset
Open AccessJournal ArticleDOI

The proximal origin of SARS-CoV-2.

Reads0
Chats0
TLDR
It is shown that SARS-CoV-2 is not a laboratory construct or a purposefully manipulated virus, and scenarios by which they could have arisen are discussed.
Abstract
SARS-CoV-2 is the seventh coronavirus known to infect humans; SARSCoV, MERS-CoV and SARS-CoV-2 can cause severe disease, whereas HKU1, NL63, OC43 and 229E are associated with mild symptoms6. Here we review what can be deduced about the origin of SARS-CoV-2 from comparative analysis of genomic data. We offer a perspective on the notable features of the SARS-CoV-2 genome and discuss scenarios by which they could have arisen. Our analyses clearly show that SARS-CoV-2 is not a laboratory construct or a purposefully manipulated virus.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Machine Learning Research Towards Combating COVID-19: Virus Detection, Spread Prevention, and Medical Assistance

TL;DR: A journey of what role ML has played so far in combating the COVID-19 virus, mainly looking at it from a screening, forecasting, and vaccine perspective is presented.
Posted ContentDOI

HTCC as a highly effective polymeric inhibitor of SARS-CoV-2 and MERS-CoV

TL;DR: The antiviral activity of previously developed HTCC compound (N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride), which may be used as potential inhibitor of currently circulating highly pathogenic coronaviruses – SARS-CoV-2 and MERS- coV, is described.
Journal ArticleDOI

One-Pot Synthesis and Molecular Modeling Studies of New Bioactive Spiro-Oxindoles Based on Uracil Derivatives as SARS-CoV-2 Inhibitors Targeting RNA Polymerase and Spike Glycoprotein

TL;DR: This study aims to design a simple and efficient cyclo-condensation reaction of 6-aminouracil derivatives 2a–e and isatin derivatives 1a–c to synthesize spiro-oxindoles 3a–d, 4 a–e, and 5a-e to synthesise spiro’s most active hybrids.
Journal ArticleDOI

Coronaviruses disease 2019 (COVID-19): Causative agent, mental health concerns, and potential management options.

TL;DR: The transmission, health consequences, and potential management options for COVID-19 disease are discussed and development of protective strategies against the CO VID-19 by enhancing immune responses will be an asset in the current scenarios.
Journal ArticleDOI

The Battle between Retroviruses and APOBEC3 Genes: Its Past and Present.

TL;DR: The current knowledge of the interplay between mammalian APOBEC3 proteins and viral infections is summarized and a scenario of the coevolution of mammalian AP OBEC3 genes and viruses is introduced.
References
More filters
Journal ArticleDOI

A pneumonia outbreak associated with a new coronavirus of probable bat origin

TL;DR: Identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China, and it is shown that this virus belongs to the species of SARSr-CoV, indicates that the virus is related to a bat coronav virus.
Journal ArticleDOI

A new coronavirus associated with human respiratory disease in China.

TL;DR: Phylogenetic and metagenomic analyses of the complete viral genome of a new coronavirus from the family Coronaviridae reveal that the virus is closely related to a group of SARS-like coronaviruses found in bats in China.
Journal ArticleDOI

An interactive web-based dashboard to track COVID-19 in real time.

TL;DR: The outbreak of the 2019 novel coronavirus disease (COVID-19) has induced a considerable degree of fear, emotional stress and anxiety among individuals around the world.
Journal ArticleDOI

Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.

TL;DR: The authors show that this protein binds at least 10 times more tightly than the corresponding spike protein of severe acute respiratory syndrome (SARS)–CoV to their common host cell receptor, and test several published SARS-CoV RBD-specific monoclonal antibodies found that they do not have appreciable binding to 2019-nCoV S, suggesting that antibody cross-reactivity may be limited between the two RBDs.
Related Papers (5)