scispace - formally typeset
Search or ask a question

Showing papers on "Climate change published in 2010"


Journal ArticleDOI
TL;DR: In this paper, the authors present the first global assessment of recent tree mortality attributed to drought and heat stress and identify key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system.

5,811 citations


Journal ArticleDOI
11 Feb 2010-Nature
TL;DR: A new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community is described.
Abstract: Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth's climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community.

5,670 citations


Journal ArticleDOI
TL;DR: In this paper, the authors provide a synthesis of past research on the role of soil moisture for the climate system, based both on modelling and observational studies, focusing on soil moisture-temperature and soil moistureprecipitation feedbacks, and their possible modifications with climate change.

3,402 citations


Journal ArticleDOI
11 Jun 2010-Science
TL;DR: It is shown that meltwater is extremely important in the Indus basin and important for the Brahmaputra basin, but plays only a modest role for the Ganges, Yangtze, and Yellow rivers, indicating a huge difference in the extent to which climate change is predicted to affect water availability and food security.
Abstract: More than 1.4 billion people depend on water from the Indus, Ganges, Brahmaputra, Yangtze, and Yellow rivers. Upstream snow and ice reserves of these basins, important in sustaining seasonal water availability, are likely to be affected substantially by climate change, but to what extent is yet unclear. Here, we show that meltwater is extremely important in the Indus basin and important for the Brahmaputra basin, but plays only a modest role for the Ganges, Yangtze, and Yellow rivers. A huge difference also exists between basins in the extent to which climate change is predicted to affect water availability and food security. The Brahmaputra and Indus basins are most susceptible to reductions of flow, threatening the food security of an estimated 60 million people.

2,754 citations


Journal ArticleDOI
TL;DR: The authors used satellite-observed night lights to identify measurement stations located in extreme darkness and adjust temperature trends of urban and periurban stations for nonclimatic factors, verifying that urban effects on analyzed global change are small.
Abstract: [1] We update the Goddard Institute for Space Studies (GISS) analysis of global surface temperature change, compare alternative analyses, and address questions about perception and reality of global warming. Satellite-observed night lights are used to identify measurement stations located in extreme darkness and adjust temperature trends of urban and periurban stations for nonclimatic factors, verifying that urban effects on analyzed global change are small. Because the GISS analysis combines available sea surface temperature records with meteorological station measurements, we test alternative choices for the ocean data, showing that global temperature change is sensitive to estimated temperature change in polar regions where observations are limited. We use simple 12 month (and n × 12) running means to improve the information content in our temperature graphs. Contrary to a popular misconception, the rate of warming has not declined. Global temperature is rising as fast in the past decade as in the prior 2 decades, despite year-to-year fluctuations associated with the El Nino-La Nina cycle of tropical ocean temperature. Record high global 12 month running mean temperature for the period with instrumental data was reached in 2010.

2,619 citations


Journal ArticleDOI
02 Sep 2010-Nature
TL;DR: It is found that notwithstanding the clear warming that has occurred in China in recent decades, current understanding does not allow a clear assessment of the impact of anthropogenic climate change on China’s water resources and agriculture and therefore China's ability to feed its people.
Abstract: China is the world's most populous country and a major emitter of greenhouse gases. Consequently, much research has focused on China's influence on climate change but somewhat less has been written about the impact of climate change on China. China experienced explosive economic growth in recent decades, but with only 7% of the world's arable land available to feed 22% of the world's population, China's economy may be vulnerable to climate change itself. We find, however, that notwithstanding the clear warming that has occurred in China in recent decades, current understanding does not allow a clear assessment of the impact of anthropogenic climate change on China's water resources and agriculture and therefore China's ability to feed its people. To reach a more definitive conclusion, future work must improve regional climate simulations-especially of precipitation-and develop a better understanding of the managed and unmanaged responses of crops to changes in climate, diseases, pests and atmospheric constituents.

2,611 citations


Journal ArticleDOI
18 Jun 2010-Science
TL;DR: Although there is considerable uncertainty about the spatial and temporal details, climate change is clearly and fundamentally altering ocean ecosystems and will continue to create enormous challenges and costs for societies worldwide, particularly those in developing countries.
Abstract: Marine ecosystems are centrally important to the biology of the planet, yet a comprehensive understanding of how anthropogenic climate change is affecting them has been poorly developed. Recent studies indicate that rapidly rising greenhouse gas concentrations are driving ocean systems toward conditions not seen for millions of years, with an associated risk of fundamental and irreversible ecological transformation. The impacts of anthropogenic climate change so far include decreased ocean productivity, altered food web dynamics, reduced abundance of habitat-forming species, shifting species distributions, and a greater incidence of disease. Although there is considerable uncertainty about the spatial and temporal details, climate change is clearly and fundamentally altering ocean ecosystems. Further change will continue to create enormous challenges and costs for societies worldwide, particularly those in developing countries.

2,408 citations


Journal ArticleDOI
TL;DR: In this paper, the characteristics of tropical cyclones have changed or will change in a warming climate and if so, how, has been the subject of considerable investigation, often with conflicting results.
Abstract: Whether the characteristics of tropical cyclones have altered, or will alter, in a changing climate has been subject of considerable debate. An overview of recent research indicates that greenhouse warming will cause stronger storms, on average, but a decrease in the frequency of tropical cyclones. Whether the characteristics of tropical cyclones have changed or will change in a warming climate — and if so, how — has been the subject of considerable investigation, often with conflicting results. Large amplitude fluctuations in the frequency and intensity of tropical cyclones greatly complicate both the detection of long-term trends and their attribution to rising levels of atmospheric greenhouse gases. Trend detection is further impeded by substantial limitations in the availability and quality of global historical records of tropical cyclones. Therefore, it remains uncertain whether past changes in tropical cyclone activity have exceeded the variability expected from natural causes. However, future projections based on theory and high-resolution dynamical models consistently indicate that greenhouse warming will cause the globally averaged intensity of tropical cyclones to shift towards stronger storms, with intensity increases of 2–11% by 2100. Existing modelling studies also consistently project decreases in the globally averaged frequency of tropical cyclones, by 6–34%. Balanced against this, higher resolution modelling studies typically project substantial increases in the frequency of the most intense cyclones, and increases of the order of 20% in the precipitation rate within 100 km of the storm centre. For all cyclone parameters, projected changes for individual basins show large variations between different modelling studies.

2,368 citations


Journal ArticleDOI
18 Jun 2010-Science
TL;DR: Although the impacts of sea-level rise are potentially large, the application and success of adaptation are large uncertainties that require more assessment and consideration.
Abstract: Global sea levels have risen through the 20th century. These rises will almost certainly accelerate through the 21st century and beyond because of global warming, but their magnitude remains uncertain. Key uncertainties include the possible role of the Greenland and West Antarctic ice sheets and the amplitude of regional changes in sea level. In many areas, nonclimatic components of relative sea-level change (mainly subsidence) can also be locally appreciable. Although the impacts of sea-level rise are potentially large, the application and success of adaptation are large uncertainties that require more assessment and consideration.

2,008 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a new dataset of gridded emissions covering the historical period (1850-2000) in decadal increments at a horizontal resolution of 0.5° in latitude and longitude.
Abstract: We present and discuss a new dataset of gridded emissions covering the historical period (1850–2000) in decadal increments at a horizontal resolution of 0.5° in latitude and longitude. The primary purpose of this inventory is to provide consistent gridded emissions of reactive gases and aerosols for use in chemistry model simulations needed by climate models for the Climate Model Intercomparison Program #5 (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Our best estimate for the year 2000 inventory represents a combination of existing regional and global inventories to capture the best information available at this point; 40 regions and 12 sectors are used to combine the various sources. The historical reconstruction of each emitted compound, for each region and sector, is then forced to agree with our 2000 estimate, ensuring continuity between past and 2000 emissions. Simulations from two chemistry-climate models is used to test the ability of the emission dataset described here to capture long-term changes in atmospheric ozone, carbon monoxide and aerosol distributions. The simulated long-term change in the Northern mid-latitudes surface and mid-troposphere ozone is not quite as rapid as observed. However, stations outside this latitude band show much better agreement in both present-day and long-term trend. The model simulations indicate that the concentration of carbon monoxide is underestimated at the Mace Head station; however, the long-term trend over the limited observational period seems to be reasonably well captured. The simulated sulfate and black carbon deposition over Greenland is in very good agreement with the ice-core observations spanning the simulation period. Finally, aerosol optical depth and additional aerosol diagnostics are shown to be in good agreement with previously published estimates and observations.

1,953 citations


Journal ArticleDOI
TL;DR: In this paper, the most important potential impacts of climate change on forest goods and services are summarized for the Boreal, Temperate Oceanic, TOC, Mediterranean, and mountainous regions.

Journal ArticleDOI
21 Oct 2010-Nature
TL;DR: An estimate of global land evapotranspiration from 1982 to 2008 is provided using a global monitoring network, meteorological and remote-sensing observations, and a machine-learning algorithm, which suggests that increasing soil-moisture limitations on evapOTranspiration largely explain the recent decline of the global land-evapotranpiration trend.
Abstract: More than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land-a key diagnostic criterion of the effects of climate change and variability-remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network, meteorological and remote-sensing observations, and a machine-learning algorithm. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1 ± 1.0 millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Ni±o event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science. © 2010 Macmillan Publishers Limited. All rights reserved.

Journal ArticleDOI
TL;DR: In this paper, the authors argue that instead of focusing only on global efforts (which are indeed a necessary part of the longterm solution), it is better to encourage polycentric efforts to reduce the risks associated with the emission of greenhouse gases.
Abstract: The 20th anniversary issue of Global Environmental Change provides an important opportunity to address the core questions involved in addressing ‘‘global environmental’’ problems—especially those related to climate change. Climate change is a global collective-action problem since all of us face the likelihood of extremely adverse outcomes that could be reduced if many participants take expensive actions. Conventional collective-action theory predicts that these problems will not be solved unless an external authority determines appropriate actions to be taken, monitors behavior, and imposes sanctions. Debating about global efforts to solve climate-change problems, however, has yet not led to an effective global treaty. Fortunately, many activities can be undertaken by multiple units at diverse scales that cumulatively make a difference. I argue that instead of focusing only on global efforts (which are indeed a necessary part of the long-term solution), it is better to encourage polycentric efforts to reduce the risks associated with the emission of greenhouse gases. Polycentric approaches facilitate achieving benefits at multiple scales as well as experimentation and learning from experience with diverse policies.

Journal ArticleDOI
TL;DR: A toolbox with definitions of key theoretical elements and a synthesis of the current understanding of the molecular and genetic mechanisms underlying plasticity relevant to climate change is provided to provide clear directives for future research and stimulate cross-disciplinary dialogue on the relevance of phenotypic plasticity under climate change.

Journal ArticleDOI
14 May 2010-Science
TL;DR: Global extinction projections were validated with local extinctions observed from 1975 to 2009 for regional biotas on four other continents, suggesting that lizards have already crossed a threshold for extinctions caused by climate change.
Abstract: It is predicted that climate change will cause species extinctions and distributional shifts in coming decades, but data to validate these predictions are relatively scarce Here, we compare recent and historical surveys for 48 Mexican lizard species at 200 sites Since 1975, 12% of local populations have gone extinct We verified physiological models of extinction risk with observed local extinctions and extended projections worldwide Since 1975, we estimate that 4% of local populations have gone extinct worldwide, but by 2080 local extinctions are projected to reach 39% worldwide, and species extinctions may reach 20% Global extinction projections were validated with local extinctions observed from 1975 to 2009 for regional biotas on four other continents, suggesting that lizards have already crossed a threshold for extinctions caused by climate change

Journal ArticleDOI
TL;DR: In this paper, the authors integrate perspectives from meteorologists, climatologists, statisticians, and hydrologists to identify generic end user (in particular, impact modeler) needs and to discuss downscaling capabilities and gaps.
Abstract: Precipitation downscaling improves the coarse resolution and poor representation of precipitation in global climate models and helps end users to assess the likely hydrological impacts of climate change. This paper integrates perspectives from meteorologists, climatologists, statisticians, and hydrologists to identify generic end user (in particular, impact modeler) needs and to discuss downscaling capabilities and gaps. End users need a reliable representation of precipitation intensities and temporal and spatial variability, as well as physical consistency, independent of region and season. In addition to presenting dynamical downscaling, we review perfect prognosis statistical downscaling, model output statistics, and weather generators, focusing on recent developments to improve the representation of space-time variability. Furthermore, evaluation techniques to assess downscaling skill are presented. Downscaling adds considerable value to projections from global climate models. Remaining gaps are uncertainties arising from sparse data; representation of extreme summer precipitation, subdaily precipitation, and full precipitation fields on fine scales; capturing changes in small-scale processes and their feedback on large scales; and errors inherited from the driving global climate model.

Journal ArticleDOI
TL;DR: The potential for larger O2 declines in the future suggests the need for an improved observing system for tracking ocean 02 changes, and an important consequence may be an expansion in the area and volume of so-called oxygen minimum zones.
Abstract: Ocean warming and increased stratification of the upper ocean caused by global climate change will likely lead to declines in dissolved O2 in the ocean interior (ocean deoxygenation) with implications for ocean productivity, nutrient cycling, carbon cycling, and marine habitat. Ocean models predict declines of 1 to 7% in the global ocean O2 inventory over the next century, with declines continuing for a thousand years or more into the future. An important consequence may be an expansion in the area and volume of so-called oxygen minimum zones, where O2 levels are too low to support many macrofauna and profound changes in biogeochemical cycling occur. Significant deoxygenation has occurred over the past 50 years in the North Pacific and tropical oceans, suggesting larger changes are looming. The potential for larger O2 declines in the future suggests the need for an improved observing system for tracking ocean O2 changes.

Journal ArticleDOI
25 Mar 2010-Nature
TL;DR: A database of worldwide RS observations matched with high-resolution historical climate data is constructed and a previously unknown temporal trend in the RS record is found, consistent with an acceleration of the terrestrial carbon cycle in response to global climate change.
Abstract: The carbon dioxide generated underground by plants and microbes and released into the atmosphere — termed soil respiration — comprises the second largest terrestrial carbon flux. It has been suggested that the flow of CO2 from this source should change with climate, but this has been difficult to confirm observationally. Ben Bond-Lamberty and Allison Thomson use a two-decade database of soil respiration measurements to show that not only is soil respiration increasing over time, but also that this increase is strongly associated with temperature changes. They estimate that total global soil respiration is increasing by about 0.1% per year, implying a moderate sensitivity to air temperature. This is consistent with an acceleration of the terrestrial carbon cycle in recent decades. Soil respiration (RS) is the flux of microbial- and plant-respired carbon dioxide from the soil surface to the atmosphere, and constitutes the second-largest terrestrial carbon flux. It has been suggested that RS should change with climate, but this has been difficult to confirm observationally. It is shown here, however, that the air temperature anomaly (the deviation from the 1961–1990 mean) correlates significantly and positively with changes in RS. Soil respiration, RS, the flux of microbially and plant-respired carbon dioxide (CO2) from the soil surface to the atmosphere, is the second-largest terrestrial carbon flux1,2,3. However, the dynamics of RS are not well understood and the global flux remains poorly constrained4,5. Ecosystem warming experiments6,7, modelling analyses8,9 and fundamental biokinetics10 all suggest that RS should change with climate. This has been difficult to confirm observationally because of the high spatial variability of RS, inaccessibility of the soil medium and the inability of remote-sensing instruments to measure RS on large scales. Despite these constraints, it may be possible to discern climate-driven changes in regional or global RS values in the extant four-decade record of RS chamber measurements. Here we construct a database of worldwide RS observations matched with high-resolution historical climate data and find a previously unknown temporal trend in the RS record after accounting for mean annual climate, leaf area, nitrogen deposition and changes in CO2 measurement technique. We find that the air temperature anomaly (the deviation from the 1961–1990 mean) is significantly and positively correlated with changes in RS. We estimate that the global RS in 2008 (that is, the flux integrated over the Earth’s land surface over 2008) was 98 ± 12 Pg C and that it increased by 0.1 Pg C yr-1 between 1989 and 2008, implying a global RS response to air temperature (Q10) of 1.5. An increasing global RS value does not necessarily constitute a positive feedback to the atmosphere, as it could be driven by higher carbon inputs to soil rather than by mobilization of stored older carbon. The available data are, however, consistent with an acceleration of the terrestrial carbon cycle in response to global climate change.

01 Jan 2010
TL;DR: The TGICA is a specialized body of the IPCC that distributes data and scenarios to support research and assessment across the three IPCC working groups.
Abstract: The TGICA is a specialized body of the IPCC that distributes data and scenarios to support research and assessment across the three IPCC working groups. The TGICA coordinates a Data Distribution Centre (DDC) which provides data sets, climate and related socio-economic/environmental scenarios, and other materials (e.g., technical guidelines on the use of scenarios). TGICA contributes to capacity building in the use of data and scenarios in developing and transition-economy regions and countries. TGICA has approximately 20 members drawn from the research community and is co-chaired by Richard Moss (US) and Jose Marengo (Brazil).

Journal ArticleDOI
TL;DR: In this article, satellite-based estimates of forest loss suggest that urban population growth and urban and international demand for agricultural products are key drivers of tropical deforestation in the tropics and that efforts need to focus on reducing deforestation for industrial-scale, export-oriented agricultural production, concomitant with efforts to increase yields in non-forested lands to satisfy demands for agricultural product.
Abstract: Reducing tropical deforestation is at present considered a cost-effective option for mitigating climate change. Satellite-based estimates of forest loss suggest that urban population growth and urban and international demand for agricultural products are key drivers of deforestation in the tropics. Reducing atmospheric carbon emissions from tropical deforestation is at present considered a cost-effective option for mitigating climate change. However, the forces associated with tropical forest loss are uncertain1. Here we use satellite-based estimates of forest loss for 2000 to 2005 (ref. 2) to assess economic, agricultural and demographic correlates across 41 countries in the humid tropics. Two methods of analysis—linear regression and regression tree—show that forest loss is positively correlated with urban population growth and exports of agricultural products for this time period. Rural population growth is not associated with forest loss, indicating the importance of urban-based and international demands for agricultural products as drivers of deforestation. The strong trend in movement of people to cities in the tropics is, counter-intuitively, likely to be associated with greater pressures for clearing tropical forests. We therefore suggest that policies to reduce deforestation among local, rural populations will not address the main cause of deforestation in the future. Rather, efforts need to focus on reducing deforestation for industrial-scale, export-oriented agricultural production, concomitant with efforts to increase yields in non-forested lands to satisfy demands for agricultural products.

Journal ArticleDOI
TL;DR: This work proposes a framework based on ideas from global-change biology, community ecology, and invasion biology that uses community modules to assess how species interactions shape responses to climate change.
Abstract: Predicting the impacts of climate change on species is one of the biggest challenges that ecologists face Predictions routinely focus on the direct effects of climate change on individual species, yet interactions between species can strongly influence how climate change affects organisms at every scale by altering their individual fitness, geographic ranges and the structure and dynamics of their community Failure to incorporate these interactions limits the ability to predict responses of species to climate change We propose a framework based on ideas from global-change biology, community ecology, and invasion biology that uses community modules to assess how species interactions shape responses to climate change

Journal ArticleDOI
TL;DR: A synthesis of climate change effects on native bark beetles, important mortality agents of conifers in western North America, is provided and a movement of temperature suitability to higher latitudes and elevations is suggested.
Abstract: Climatic changes are predicted to significantly affect the frequency and severity of disturbances that shape forest ecosystems. We provide a synthesis of climate change effects on native bark beetles, important mortality agents of conifers in western North America. Because of differences in temperature-dependent life-history strategies, including cold-induced mortality and developmental timing, responses to warming will differ among and within bark beetle species. The success of bark beetle populations will also be influenced indirectly by the effects of climate on community associates and host-tree vigor, although little information is available to quantify these relationships. We used available population models and climate forecasts to explore the responses of two eruptive bark beetle species. Based on projected warming, increases in thermal regimes conducive to population success are predicted for Dendroctonus rufipennis (Kirby) and Dendroctonus ponderosae Hopkins, although there is considerable spatial and temporal variability. These predictions from population models suggest a movement of temperature suitability to higher latitudes and elevations and identify regions with a high potential for bark beetle outbreaks and associated tree mortality in the coming century.

Journal ArticleDOI
TL;DR: There is need not only to continue to focus on the impacts of climate change on the actors in ecological networks but also and more intensively tofocus on the linkages between them, and to acknowledge that biotic interactions and feedback processes lead to highly complex, nonlinear and sometimes abrupt responses.
Abstract: There is ample evidence for ecological responses to recent climate change. Most studies to date have concentrated on the effects of climate change on individuals and species, with particular emphasis on the effects on phenology and physiology of organisms as well as changes in the distribution and range shifts of species. However, responses by individual species to climate change are not isolated; they are connected through interactions with others at the same or adjacent trophic levels. Also from this more complex perspective, recent case studies have emphasized evidence on the effects of climate change on biotic interactions and ecosystem services. This review highlights the ‘knowns’ but also ‘unknowns’ resulting from recent climate impact studies and reveals limitations of (linear) extrapolations from recent climate-induced responses of species to expected trends and magnitudes of future climate change. Hence, there is need not only to continue to focus on the impacts of climate change on the actors in ecological networks but also and more intensively to focus on the linkages between them, and to acknowledge that biotic interactions and feedback processes lead to highly complex, nonlinear and sometimes abrupt responses.

Posted Content
TL;DR: The authors argue that a climate change regime complex, if it meets specified criteria, has advantages over any politically feasible comprehensive regime, particularly with respect to adaptability and flexibility, in a setting where the most demanding international commitments are interdependent yet governments vary widely in their interest and ability to implement them.
Abstract: There is no integrated regime governing efforts to limit the extent of climate change. Instead, there is a regime complex: a loosely coupled set of specific regimes. We describe the regime complex for climate change and seek to explain it, using functional, strategic, and organizational arguments. This institutional form is likely to persist; efforts to build a comprehensive regime are unlikely to succeed, but narrower institutions focused on particular aspects of the climate change problem are already thriving. Building on this analysis, we argue that a climate change regime complex, if it meets specified criteria, has advantages over any politically feasible comprehensive regime, particularly with respect to adaptability and flexibility. Adaptability and flexibility are particularly important in a setting, such as climate change policy, in which the most demanding international commitments are interdependent yet governments vary widely in their interest and ability to implement them.

Journal ArticleDOI
TL;DR: The El Nino-Southern Oscillation (ENSO) is a naturally occurring fluctuation that originates in the tropical Pacific region and affects ecosystems, agriculture, freshwater supplies, hurricanes and other severe weather events worldwide.
Abstract: The El Nino-Southern Oscillation (ENSO) is a naturally occurring fluctuation that originates in the tropical Pacific region and affects ecosystems, agriculture, freshwater supplies, hurricanes and other severe weather events worldwide. Under the influence of global warming, the mean climate of the Pacific region will probably undergo significant changes. The tropical easterly trade winds are expected to weaken; surface ocean temperatures are expected to warm fastest near the equator and more slowly farther away; the equatorial thermocline that marks the transition between the wind-mixed upper ocean and deeper layers is expected to shoal; and the temperature gradients across the thermocline are expected to become steeper. Year-to-year ENSO variability is controlled by a delicate balance of amplifying and damping feedbacks, and one or more of the physical processes that are responsible for determining the characteristics of ENSO will probably be modified by climate change. Therefore, despite considerable progress in our understanding of the impact of climate change on many of the processes that contribute to El Nino variability, it is not yet possible to say whether ENSO activity will be enhanced or damped, or if the frequency of events will change.

Journal ArticleDOI
TL;DR: While the multimodel average appears to still be useful in some situations, the results show that more quantitative methods to evaluate model performance are critical to maximize the value of climate change projections from global models.
Abstract: Recent coordinated efforts, in which numerous general circulation climate models have been run for a common set of experiments, have produced large datasets of projections of future climate for various scenarios. Those multimodel ensembles sample initial conditions, parameters, and structural uncertainties in the model design, and they have prompted a variety of approaches to quantifying uncertainty in future climate change. International climate change assessments also rely heavily on these models. These assessments often provide equal-weighted averages as best-guess results, assuming that individual model biases will at least partly cancel and that a model average prediction is more likely to be correct than a prediction from a single model based on the result that a multimodel average of present-day climate generally outperforms any individual model. This study outlines the motivation for using multimodel ensembles and discusses various challenges in interpreting them. Among these challenges are that the number of models in these ensembles is usually small, their distribution in the model or parameter space is unclear, and that extreme behavior is often not sampled. Model skill in simulating present-day climate conditions is shown to relate only weakly to the magnitude of predicted change. It is thus unclear by how much the confidence in future projections should increase based on improvements in simulating present-day conditions, a reduction of intermodel spread, or a larger number of models. Averaging model output may further lead to a loss of signal— for example, for precipitation change where the predicted changes are spatially heterogeneous, such that the true expected change is very likely to be larger than suggested by a model average. Last, there is little agreement on metrics to separate ‘‘good’’ and ‘‘bad’’ models, and there is concern that model development, evaluation, and posterior weighting or ranking are all using the same datasets. While the multimodel average appears to still be useful in some situations, these results show that more quantitative methods to evaluate model performance are critical to maximize the value of climate change projections from global models.

Journal ArticleDOI
10 Sep 2010-Science
TL;DR: In this article, the authors estimated the commitment to future emissions and warming represented by existing carbon dioxide-emitting devices and concluded that sources of the most threatening emissions have yet to be built.
Abstract: Slowing climate change requires overcoming inertia in political, technological, and geophysical systems. Of these, only geophysical warming commitment has been quantified. We estimated the commitment to future emissions and warming represented by existing carbon dioxide–emitting devices. We calculated cumulative future emissions of 496 (282 to 701 in lower- and upper-bounding scenarios) gigatonnes of CO 2 from combustion of fossil fuels by existing infrastructure between 2010 and 2060, forcing mean warming of 1.3°C (1.1° to 1.4°C) above the pre-industrial era and atmospheric concentrations of CO 2 less than 430 parts per million. Because these conditions would likely avoid many key impacts of climate change, we conclude that sources of the most threatening emissions have yet to be built. However, CO 2 -emitting infrastructure will expand unless extraordinary efforts are undertaken to develop alternatives.

Journal ArticleDOI
TL;DR: It is proposed that an understanding of the connections between these different levels of organization can help to develop a more coherent theoretical framework based on metabolic scaling, foraging theory and ecological stoichiometry, to predict the ecological consequences of climate change.
Abstract: Fresh waters are particularly vulnerable to climate change because (i) many species within these fragmented habitats have limited abilities to disperse as the environment changes; (ii) water temperature and availability are climate-dependent; and (iii) many systems are already exposed to numerous anthropogenic stressors. Most climate change studies to date have focused on individuals or species populations, rather than the higher levels of organization (i.e. communities, food webs, ecosystems). We propose that an understanding of the connections between these different levels, which are all ultimately based on individuals, can help to develop a more coherent theoretical framework based on metabolic scaling, foraging theory and ecological stoichiometry, to predict the ecological consequences of climate change. For instance, individual basal metabolic rate scales with body size (which also constrains food web structure and dynamics) and temperature (which determines many ecosystem processes and key aspects of foraging behaviour). In addition, increasing atmospheric CO2 is predicted to alter molar CNP ratios of detrital inputs, which could lead to profound shifts in the stoichiometry of elemental fluxes between consumers and resources at the base of the food web. The different components of climate change (e.g. temperature, hydrology and atmospheric composition) not only affect multiple levels of biological organization, but they may also interact with the many other stressors to which fresh waters are exposed, and future research needs to address these potentially important synergies.

Journal ArticleDOI
TL;DR: This article presented a new data synthesis of global peatland ages, area changes, and carbon pool changes since the Last Glacial Maximum, along with a new map and total C pool estimates.
Abstract: [1] Here we present a new data synthesis of global peatland ages, area changes, and carbon (C) pool changes since the Last Glacial Maximum, along with a new peatland map and total C pool estimates. The data show different controls of peatland expansion and C accumulation in different regions. We estimate that northern peatlands have accumulated 547 (473–621) GtC, showing maximum accumulation in the early Holocene in response to high summer insolation and strong summer – winter climate seasonality. Tropical peatlands have accumulated 50 (44–55) GtC, with rapid rates about 8000–4000 years ago affected by a high and more stable sea level, a strong summer monsoon, and before the intensification of El Nino. Southern peatlands, mostly in Patagonia, South America, have accumulated 15 (13–18) GtC, with rapid accumulation during the Antarctic Thermal Maximum in the late glacial, and during the mid-Holocene thermal maximum. This is the first comparison of peatland dynamics among these global regions. Our analysis shows that a diversity of drivers at different times have significantly impacted the global C cycle, through the contribution of peatlands to atmospheric CH4 budgets and the history of peatland CO2 exchange with the atmosphere.