scispace - formally typeset
Search or ask a question

Showing papers on "Karyotype published in 2020"


Journal ArticleDOI
02 Sep 2020-Nature
TL;DR: Multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types are used to show that continuous chromosomal instability results in pervasive SCNA heterogeneity.
Abstract: Chromosomal instability in cancer consists of dynamic changes to the number and structure of chromosomes1,2. The resulting diversity in somatic copy number alterations (SCNAs) may provide the variation necessary for tumour evolution1,3,4. Here we use multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types to show that continuous chromosomal instability results in pervasive SCNA heterogeneity. Parallel evolutionary events, which cause disruption in the same genes (such as BCL9, MCL1, ARNT (also known as HIF1B), TERT and MYC) within separate subclones, were present in 37% of tumours. Most recurrent losses probably occurred before whole-genome doubling, that was found as a clonal event in 49% of tumours. However, loss of heterozygosity at the human leukocyte antigen (HLA) locus and loss of chromosome 8p to a single haploid copy recurred at substantial subclonal frequencies, even in tumours with whole-genome doubling, indicating ongoing karyotype remodelling. Focal amplifications that affected chromosomes 1q21 (which encompasses BCL9, MCL1 and ARNT), 5p15.33 (TERT), 11q13.3 (CCND1), 19q12 (CCNE1) and 8q24.1 (MYC) were frequently subclonal yet appeared to be clonal within single samples. Analysis of an independent series of 1,024 metastatic samples revealed that 13 focal SCNAs were enriched in metastatic samples, including gains in chromosome 8q24.1 (encompassing MYC) in clear cell renal cell carcinoma and chromosome 11q13.3 (encompassing CCND1) in HER2+ breast cancer. Chromosomal instability may enable the continuous selection of SCNAs, which are established as ordered events that often occur in parallel, throughout tumour evolution.

198 citations


Journal ArticleDOI
TL;DR: The first comprehensive literature survey of karyotypes for Lepidoptera species since the 1970s and phylogenetic diversification rate analyses indicated a strong, positive association of rates of chromosome number evolution and speciation are suggested.
Abstract: Changes in chromosome numbers may strongly affect reproductive barriers, because individuals heterozygous for distinct karyotypes are typically expected to be at least partially sterile or to show reduced recombination. Therefore, several classic speciation models are based on chromosomal changes. One import mechanism generating variation in chromosome numbers is fusion and fission of existing chromosomes, which is particularly likely in species with holocentric chromosomes, i.e. chromosomes that lack a single centromere. Holocentric chromosomes evolved repeatedly across the tree of life, including in Lepidoptera. Although changes in chromosome numbers are hypothesized to be an important driver of the spectacular diversification of Lepidoptera, comparative studies across the order are lacking. We performed the first comprehensive literature survey of karyotypes for Lepidoptera species since the 1970s and tested if, and how, chromosomal variation might affect speciation. Even though a meta-analysis of karyological differences between closely related taxa did not reveal an effect on the degree of reproductive isolation, phylogenetic diversification rate analyses across the 16 best-covered genera indicated a strong, positive association of rates of chromosome number evolution and speciation. These findings suggest a macroevolutionary impact of varying chromosome numbers in Lepidoptera and likely apply to other taxonomic groups, especially to those with holocentric chromosomes. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.

53 citations


Journal ArticleDOI
TL;DR: It is shown that repetitive DNA becomes de-repressed more rapidly in old male flies relative to females, and repeats on the Y chromosome are disproportionally mis-expressed during ageing.
Abstract: Heterochromatin suppresses repetitive DNA, and a loss of heterochromatin has been observed in aged cells of several species, including humans and Drosophila. Males often contain substantially more heterochromatic DNA than females, due to the presence of a large, repeat-rich Y chromosome, and male flies generally have a shorter average lifespan than females. Here we show that repetitive DNA becomes de-repressed more rapidly in old male flies relative to females, and repeats on the Y chromosome are disproportionally mis-expressed during ageing. This is associated with a loss of heterochromatin at repetitive elements during ageing in male flies, and a general loss of repressive chromatin in aged males away from pericentromeric regions and the Y. By generating flies with different sex chromosome karyotypes (XXY females and X0 and XYY males), we show that repeat de-repression and average lifespan is correlated with the number of Y chromosomes. This suggests that sex-specific chromatin differences may contribute to sex-specific ageing in flies.

51 citations


Journal ArticleDOI
TL;DR: Hundreds of genes that are expressed differentially between individuals with aberrant sex chromosome karyotypes, many of which also show sex-biased expression in wildtype Drosophila are found, suggesting that Y chromosomes influence heterochromatin integrity genome-wide, and differences in the chromatin landscape of males and females may also contribute to sex- biased gene expression and sexual dimorphisms.
Abstract: The Drosophila Y chromosome is gene poor and mainly consists of silenced, repetitive DNA. Nonetheless, the Y influences expression of hundreds of genes genome-wide, possibly by sequestering key components of the heterochromatin machinery away from other positions in the genome. To test the influence of the Y chromosome on the genome-wide chromatin landscape, we assayed the genomic distribution of histone modifications associated with gene activation (H3K4me3) or heterochromatin (H3K9me2 and H3K9me3) in fruit flies with varying sex chromosome complements (X0, XY, and XYY males; XX and XXY females). Consistent with the general deficiency of active chromatin modifications on the Y, we find that Y gene dose has little influence on the genomic distribution of H3K4me3. In contrast, both the presence and the number of Y chromosomes strongly influence genome-wide enrichment patterns of repressive chromatin modifications. Highly repetitive regions such as the pericentromeres, the dot, and the Y chromosome (if present) are enriched for heterochromatic modifications in wildtype males and females, and even more strongly in X0 flies. In contrast, the additional Y chromosome in XYY males and XXY females diminishes the heterochromatic signal in these normally silenced, repeat-rich regions, which is accompanied by an increase in expression of Y-linked repeats. We find hundreds of genes that are expressed differentially between individuals with aberrant sex chromosome karyotypes, many of which also show sex-biased expression in wildtype Drosophila. Thus, Y chromosomes influence heterochromatin integrity genome-wide, and differences in the chromatin landscape of males and females may also contribute to sex-biased gene expression and sexual dimorphisms.

42 citations


Journal ArticleDOI
11 Apr 2020-Genes
TL;DR: All data indicate that turtles follow some tenets of classic theoretical models of sex chromosome evolution while countering others, and this gap is rapidly decreasing with the acceleration of ongoing research and growing genomic resources in this group.
Abstract: Sex chromosome evolution remains an evolutionary puzzle despite its importance in understanding sexual development and genome evolution. The seemingly random distribution of sex-determining systems in reptiles offers a unique opportunity to study sex chromosome evolution not afforded by mammals or birds. These reptilian systems derive from multiple transitions in sex determination, some independent, some convergent, that lead to the birth and death of sex chromosomes in various lineages. Here we focus on turtles, an emerging model group with growing genomic resources. We review karyotypic changes that accompanied the evolution of chromosomal systems of genotypic sex determination (GSD) in chelonians from systems under the control of environmental temperature (TSD). These transitions gave rise to 31 GSD species identified thus far (out of 101 turtles with known sex determination), 27 with a characterized sex chromosome system (13 of those karyotypically). These sex chromosomes are varied in terms of the ancestral autosome they co-opted and thus in their homology, as well as in their size (some are macro-, some are micro-chromosomes), heterogamety (some are XX/XY, some ZZ/ZW), dimorphism (some are virtually homomorphic, some heteromorphic with larger-X, larger W, or smaller-Y), age (the oldest system could be ~195 My old and the youngest < 25 My old). Combined, all data indicate that turtles follow some tenets of classic theoretical models of sex chromosome evolution while countering others. Finally, although the study of dosage compensation and molecular divergence of turtle sex chromosomes has lagged behind research on other aspects of their evolution, this gap is rapidly decreasing with the acceleration of ongoing research and growing genomic resources in this group.

40 citations


Journal ArticleDOI
TL;DR: It is proposed that the karyotypes of woody species are more stable than herbaceous plants since it may take a longer period of time for woody plants to fix chromosome number or structural variants in natural populations.
Abstract: The karyotype represents the basic genetic make-up of a eukaryotic species. Comparative cytogenetic analysis of related species based on individually identified chromosomes has been conducted in only a few plant groups and not yet in woody plants. We have developed a complete set of 19 chromosome painting probes based on the reference genome of the model woody plant Populus trichocarpa. Using sequential fluorescence in situ hybridization we were able to identify all poplar chromosomes in the same metaphase cells, which led to the development of poplar karyotypes based on individually identified chromosomes. We demonstrate that five Populus species, belonging to five different sections within Populus, have maintained a remarkably conserved karyotype. No inter-chromosomal structural rearrangements were observed on any of the 19 chromosomes among the five species. Thus, the chromosomal synteny in Populus has been remarkably maintained after nearly 14 million years of divergence. We propose that the karyotypes of woody species are more stable than those of herbaceous plants since it may take a longer period of time for woody plants to fix chromosome number or structural variants in natural populations.

38 citations


Journal ArticleDOI
TL;DR: Oligo-FISH analyses using these probes in various wild Oryza species revealed that chromosomes from the AA, BB or CC genomes generated specific and intense signals similar to those in rice, while chromosomes with the EE genome generated less specific signals and the FF genome gave no signal.
Abstract: Fluorescence in situ hybridization using probes based on oligonucleotides (oligo-FISH) is a useful tool for chromosome identification and karyotype analysis. Here we developed two oligo-FISH probes that allow the identification of each of the 12 pairs of chromosomes in rice (Oryza sativa). These two probes comprised 25 717 (green) and 25 215 (red) oligos (45 nucleotides), respectively, and generated 26 distinct FISH signals that can be used as a barcode to uniquely label each of the 12 pairs of rice chromosomes. Standard karyotypes of rice were established using this system on both mitotic and meiotic chromosomes. Moreover, dual-color oligo-FISH was used to characterize diverse chromosomal abnormalities. Oligo-FISH analyses using these probes in various wild Oryza species revealed that chromosomes from the AA, BB or CC genomes generated specific and intense signals similar to those in rice, while chromosomes with the EE genome generated less specific signals and the FF genome gave no signal. Together, the oligo-FISH probes we established will be a powerful tool for studying chromosome variations and evolution in the genus Oryza.

37 citations


Journal ArticleDOI
20 Jan 2020-eLife
TL;DR: It is proposed that AT-rich centromeres drive karyotype diversity in the Malassezia species complex through breakage and inactivation, which suggests two distinct mechanisms of chromosome number reduction from an inferred nine-chromosome ancestral state.
Abstract: Genomic rearrangements associated with speciation often result in variation in chromosome number among closely related species. Malassezia species show variable karyotypes ranging between six and nine chromosomes. Here, we experimentally identified all eight centromeres in M. sympodialis as 3-5-kb long kinetochore-bound regions that span an AT-rich core and are depleted of the canonical histone H3. Centromeres of similar sequence features were identified as CENP-A-rich regions in Malassezia furfur, which has seven chromosomes, and histone H3 depleted regions in Malassezia slooffiae and Malassezia globosa with nine chromosomes each. Analysis of synteny conservation across centromeres with newly generated chromosome-level genome assemblies suggests two distinct mechanisms of chromosome number reduction from an inferred nine-chromosome ancestral state: (a) chromosome breakage followed by loss of centromere DNA and (b) centromere inactivation accompanied by changes in DNA sequence following chromosome-chromosome fusion. We propose that AT-rich centromeres drive karyotype diversity in the Malassezia species complex through breakage and inactivation.

37 citations


Journal ArticleDOI
06 May 2020-Nature
TL;DR: This work demonstrates how Saccharomyces cerevisiae integrates multiple temporally distinct pathways to regulate the binding of Rec114 and Mer2 to chromosomes, thereby controlling the duration of a DSB-competent state.
Abstract: In most species, homologous chromosomes must recombine in order to segregate accurately during meiosis1. Because small chromosomes would be at risk of missegregation if recombination were randomly distributed, the double-strand breaks (DSBs) that initiate recombination are not located arbitrarily2. How the nonrandomness of DSB distributions is controlled is not understood, although several pathways are known to regulate the timing, location and number of DSBs. Meiotic DSBs are generated by Spo11 and accessory DSB proteins, including Rec114 and Mer2, which assemble on chromosomes3-7 and are nearly universal in eukaryotes8-11. Here we demonstrate how Saccharomyces cerevisiae integrates multiple temporally distinct pathways to regulate the binding of Rec114 and Mer2 to chromosomes, thereby controlling the duration of a DSB-competent state. The engagement of homologous chromosomes with each other regulates the dissociation of Rec114 and Mer2 later in prophase I, whereas the timing of replication and the proximity to centromeres or telomeres influence the accumulation of Rec114 and Mer2 early in prophase I. Another early mechanism enhances the binding of Rec114 and Mer2 specifically on the shortest chromosomes, and is subject to selection pressure to maintain the hyperrecombinogenic properties of these chromosomes. Thus, the karyotype of an organism and its risk of meiotic missegregation influence the shape and evolution of its recombination landscape. Our results provide a cohesive view of a multifaceted and evolutionarily constrained system that allocates DSBs to all pairs of homologous chromosomes.

37 citations


Journal ArticleDOI
TL;DR: The BCD will enable researchers to identify the main knowledge gaps in bird cytogenetics, including the most under-sampled groups, and make inferences on chromosomal homologies in phylogenetic studies.
Abstract: Bird chromosomes, which have been investigated scientifically for more than a century, present a number of unique features. In general, bird karyotypes have a high diploid number (2n) of typically around 80 chromosomes that are divided into macro- and microchromosomes. In recent decades, FISH studies using whole chromosome painting probes have shown that the macrochromosomes evolved through both inter- and intrachromosomal rearrangements. However, chromosome painting data are available for only a few bird species, which hinders a more systematic approach to the understanding of the evolutionary history of the enigmatic bird karyotype. Thus, we decided to create an innovative database through compilation of the cytogenetic data available for birds, including chromosome numbers and the results of chromosome painting with chicken (Gallus gallus) probes. The data were obtained through an extensive literature review, which focused on cytogenetic studies published up to 2019. In the first version of the "Bird Chromosome Database (BCD)" (https://sites.unipampa.edu.br/birdchromosomedatabase) we have compiled data on the chromosome numbers of 1,067 bird species and chromosome painting data on 96 species. We found considerable variation in the diploid numbers, which ranged from 40 to 142, although most (around 50%) of the species studied up to now have between 78 and 82 chromosomes. Despite its importance for cytogenetic research, chromosome painting has been applied to less than 1% of all bird species. The BCD will enable researchers to identify the main knowledge gaps in bird cytogenetics, including the most under-sampled groups, and make inferences on chromosomal homologies in phylogenetic studies.

35 citations


Journal ArticleDOI
TL;DR: Deep learning is used to automate karyotyping to recognize the common numerical abnormalities on a dataset containing 147 non-overlapped metaphase images collected from the Center of Excellence in Genomic Medicine Research at King Abdulaziz University.
Abstract: Chromosome analysis is an essential task in a cytogenetics lab, where cytogeneticists can diagnose whether there are abnormalities or not. Karyotyping is a standard technique in chromosome analysis that classifies metaphase image to 24 chromosome classes. The main two categories of chromosome abnormalities are structural abnormalities that are changing in the structure of chromosomes and numerical abnormalities which include either monosomy (missing one chromosome) or trisomy (extra copy of the chromosome). Manual karyotyping is complex and requires high domain expertise, as it takes an amount of time. With these motivations, in this research, we used deep learning to automate karyotyping to recognize the common numerical abnormalities on a dataset containing 147 non-overlapped metaphase images collected from the Center of Excellence in Genomic Medicine Research at King Abdulaziz University. The metaphase images went through three stages. The first one is individual chromosomes detection using YOLOv2 Convolutional Neural Network followed by some chromosome post-processing. This step achieved 0.84 mean IoU, 0.9923 AP, and 100% individual chromosomes detection accuracy. The second stage is feature extraction and classification where we fine-tune VGG19 network using two different approaches, one by adding extra fully connected layer(s) and another by replacing fully connected layers with the global average pooling layer. The best accuracy obtained is 95.04%. The final step is detecting abnormality and this step obtained 96.67% abnormality detection accuracy. To further validate the proposed classification method, we examined the Biomedical Imaging Laboratory dataset which is publicly available online and achieved 94.11% accuracy.

Journal ArticleDOI
TL;DR: Holocentric chromosomes as discussed by the authors possess multiple kinetochores along their length rather than the single centromere typical of other chromosomes, and they have been described for the first time in cytogenetic experiments dating from 1935.
Abstract: Holocentric chromosomes possess multiple kinetochores along their length rather than the single centromere typical of other chromosomes [1]. They have been described for the first time in cytogenetic experiments dating from 1935 and, since this first observation, the term holocentric chromosome has referred to chromosomes that: i. lack the primary constriction corresponding to centromere observed in monocentric chromosomes [2]; ii. possess multiple kinetochores dispersed along the chromosomal axis so that microtubules bind to chromosomes along their entire length and move broadside to the pole from the metaphase plate [3]. These chromosomes are also termed holokinetic, because, during cell division, chromatids move apart in parallel and do not form the classical V-shaped figures typical of monocentric chromosomes [4–6]. Holocentric chromosomes evolved several times during both animal and plant evolution and are currently reported in about eight hundred diverse species, including plants, insects, arachnids and nematodes [7,8]. As a consequence of their diffuse kinetochores, holocentric chromosomes may stabilize chromosomal fragments favouring karyotype rearrangements [9,10]. However, holocentric chromosome may also present limitations to crossing over causing a restriction of the number of chiasma in bivalents [11] and may cause a restructuring of meiotic divisions resulting in an inverted meiosis [12].

Journal ArticleDOI
01 Sep 2020
TL;DR: In this article, the authors describe chromosome-scale genome assemblies for Chinese and Indian muntjac deer, Muntiacus reevesi (2n) = 6/7, and analyze their evolution and architecture.
Abstract: Closely related muntjac deer show striking karyotype differences. Here we describe chromosome-scale genome assemblies for Chinese and Indian muntjacs, Muntiacus reevesi (2n = 46) and Muntiacus muntjak vaginalis (2n = 6/7), and analyze their evolution and architecture. The genomes show extensive collinearity with each other and with other deer and cattle. We identified numerous fusion events unique to and shared by muntjacs relative to the cervid ancestor, confirming many cytogenetic observations with genome sequence. One of these M. muntjak fusions reversed an earlier fission in the cervid lineage. Comparative Hi-C analysis showed that the chromosome fusions on the M. muntjak lineage altered long-range, three-dimensional chromosome organization relative to M. reevesi in interphase nuclei including A/B compartment structure. This reshaping of multi-megabase contacts occurred without notable change in local chromatin compaction, even near fusion sites. A few genes involved in chromosome maintenance show evidence for rapid evolution, possibly associated with the dramatic changes in karyotype. Mudd et al. provide chromosome-scale genome assemblies for the Chinese and Indian muntjac deer and demonstrate evidence for rapid evolution of genes involved in chromosome maintenance. Their comparative analyses generate new insights into rapid karyotype evolution.

Journal ArticleDOI
18 Nov 2020-Genes
TL;DR: The comparative analysis among all Harttia species cytogenetically studied thus far allowed us to provide an evolutionary scenario related to the speciation process of this fish group.
Abstract: Harttia comprises an armored catfish genus endemic to the Neotropical region, including 27 valid species with low dispersion rates that are restricted to small distribution areas. Cytogenetics data point to a wide chromosomal diversity in this genus due to changes that occurred in isolated populations, with chromosomal fusions and fissions explaining the 2n number variation. In addition, different multiple sex chromosome systems and rDNA loci location are also found in some species. However, several Harttia species and populations remain to be investigated. In this study, Harttia intermontana and two still undescribed species, morphologically identified as Harttia sp. 1 and Harttia sp. 2, were cytogenetically analyzed. Harttia intermontana has 2n = 52 and 2n = 53 chromosomes, while Harttia sp. 1 has 2n = 56 and 2n = 57 chromosomes in females and males, respectively, thus highlighting the occurrence of an XX/XY1Y2 multiple sex chromosome system in both species. Harttia sp. 2 presents 2n = 62 chromosomes for both females and males, with fission events explaining its karyotype diversification. Chromosomal locations of the rDNA sites were also quite different among species, reinforcing that extensive rearrangements had occurred in their karyotype evolution. Comparative genomic hybridization (CGH) experiments among some Harttia species evidenced a shared content of the XY1Y2 sex chromosomes in three of them, thus pointing towards their common origin. Therefore, the comparative analysis among all Harttia species cytogenetically studied thus far allowed us to provide an evolutionary scenario related to the speciation process of this fish group.

Journal ArticleDOI
TL;DR: The hypothesis that karyotypes of woody species are more stable than herbaceous plants because woody plants need a longer period of time to fix chromosome structural variants in natural populations is supported.
Abstract: Reliable identification of individual chromosomes in eukaryotic species is the foundation for comparative chromosome synteny and evolutionary studies Unfortunately, chromosome identification has been a major challenge for plants with small chromosomes, such as the Citrus species We developed oligonucleotide-based chromosome painting probes for all nine chromosomes in Citrus maxima (Pummelo) We were able to identify all C maxima chromosomes in the same metaphase cells using multiple rounds of sequential fluorescence in situ hybridization with the painting probes We conducted comparative chromosome painting analysis in six different Citrus and related species We found that each painting probe hybridized to only a single chromosome in all other five species, suggesting that the six species have maintained a complete chromosomal synteny after more than 9 million years of divergence No interchromosomal rearrangement was identified in any species These results support the hypothesis that karyotypes of woody species are more stable than herbaceous plants because woody plants need a longer period to fix chromosome structural variants in natural populations

Journal ArticleDOI
TL;DR: A new technique for maize chromosome identification based on fluorescence in situ hybridization (FISH), and two oligonucleotide-based probes that hybridize to 24 chromosomal regions are developed that support that Z. nicaraguensis and Z. luxurians are closely related species.
Abstract: Maize was one of the first eukaryotic species in which individual chromosomes can be identified cytologically, which made maize one of the oldest models for genetics and cytogenetics research. Nevertheless, consistent identification of all 10 chromosomes from different maize lines as well as from wild Zea species remains a challenge. We developed a new technique for maize chromosome identification based on fluorescence in situ hybridization (FISH). We developed two oligonucleotide-based probes that hybridize to 24 chromosomal regions. Individual maize chromosomes show distinct FISH signal patterns, which allow universal identification of all chromosomes from different Zea species. We developed karyotypes from three Zea mays subspecies and two additional wild Zea species based on individually identified chromosomes. A paracentric inversion was discovered on the long arm of chromosome 4 in Z. nicaraguensis and Z. luxurians based on modifications of the FISH signal patterns. Chromosomes from these two species also showed distinct distribution patterns of terminal knobs compared with other Zea species. These results support that Z. nicaraguensis and Z. luxurians are closely related species.

Journal ArticleDOI
TL;DR: The results suggest that holocentricity alone does not lead to higher rates of chromosome number changes, and it is suggested that other co-evolving traits must explain striking differences between clades.
Abstract: Despite the fundamental role of centromeres two different types are observed across plants and animals. Monocentric chromosomes possess a single region that function as the centromere while in holocentric chromosomes centromere activity is spread across the entire chromosome. Proper segregation may fail in species with monocentric chromosomes after a fusion or fission, which may lead to chromosomes with no centromere or multiple centromeres. In contrast, species with holocentric chromosomes should still be able to safely segregate chromosomes after fusion or fission. This along with the observation of high chromosome number in some holocentric clades has led to the hypothesis that holocentricity leads to higher rates of chromosome number evolution. To test for differences in rates of chromosome number evolution between these systems, we analyzed data from 4,393 species of insects in a phylogenetic framework. We found that insect orders exhibit striking differences in rates of fissions, fusions, and polyploidy. However, across all insects we found no evidence that holocentric clades have higher rates of fissions, fusions, or polyploidy than monocentric clades. Our results suggest that holocentricity alone does not lead to higher rates of chromosome number changes. Instead, we suggest that other co-evolving traits must explain striking differences between clades.

Journal ArticleDOI
TL;DR: It is found that fusions play a key role in the origin of new sex chromosomes, and that orders exhibit striking differences in rates of fusions, fissions and polyploidy.
Abstract: The structure of a genome can be described at its simplest by the number of chromosomes and the sex chromosome system it contains. Despite over a century of study, the evolution of genome structure on this scale remains recalcitrant to broad generalizations that can be applied across clades. To address this issue, we have assembled a dataset of 823 karyotypes from the insect group Polyneoptera. This group contains orders with a range of variations in chromosome number, and offer the opportunity to explore the possible causes of these differences. We have analysed these data using both phylogenetic and taxonomic approaches. Our analysis allows us to assess the importance of rates of evolution, phylogenetic history, sex chromosome systems, parthenogenesis and genome size on variation in chromosome number within clades. We find that fusions play a key role in the origin of new sex chromosomes, and that orders exhibit striking differences in rates of fusions, fissions and polyploidy. Our results suggest that the difficulty in finding consistent rules that govern evolution at this scale may be due to the presence of many interacting forces that can lead to variation among groups.

Journal ArticleDOI
TL;DR: It is demonstrated that F1 hybrids are highly heterozygous with nearly all chromosomes participating in the formation of trivalents at the first meiotic division, and argued that the observed process of chromosome sorting would result in a new homozygous chromosomal race, i.e., in anew karyotype with intermediate chromosome number and, possibly, in aNew incipient homoploid hybrid species.
Abstract: Heterozygotes for major chromosomal rearrangements such as fusions and fissions are expected to display a high level of sterility due to problems during meiosis. However, some species, especially plants and animals with holocentric chromosomes, are known to tolerate chromosomal heterozygosity even for multiple rearrangements. Here, we studied male meiotic chromosome behavior in four hybrid generations (F1-F4) between two chromosomal races of the Wood White butterfly Leptidea sinapis differentiated by at least 24 chromosomal fusions/fissions. Previous work showed that these hybrids were fertile, although their fertility was reduced as compared to crosses within chromosomal races. We demonstrate that (i) F1 hybrids are highly heterozygous with nearly all chromosomes participating in the formation of trivalents at the first meiotic division, and (ii) that from F1 to F4 the number of trivalents decreases and the number of bivalents increases. We argue that the observed process of chromosome sorting would, if continued, result in a new homozygous chromosomal race, i.e., in a new karyotype with intermediate chromosome number and, possibly, in a new incipient homoploid hybrid species. We also discuss the segregational model of karyotype evolution and the chromosomal model of homoploid hybrid speciation.

Journal ArticleDOI
22 Dec 2020-Cells
TL;DR: In this article, the authors combined conventional and molecular cytogenetic approaches to investigate chromosome homologies between chicken and the smooth-billed ani (Crotophaga ani), and demonstrated extensive chromosome reorganization in C. ani, with interchromosomal rearrangements involving macro and micro-chromosomes.
Abstract: Although cytogenetics studies in cuckoos (Aves, Cuculiformes) have demonstrated an interesting karyotype variation, such as variations in the chromosome morphology and diploid number, their chromosome organization and evolution, and relation with other birds are poorly understood. Hence, we combined conventional and molecular cytogenetic approaches to investigate chromosome homologies between chicken and the smooth-billed ani (Crotophaga ani). Our results demonstrate extensive chromosome reorganization in C. ani, with interchromosomal rearrangements involving macro and microchromosomes. Intrachromosomal rearrangements were observed in some macrochromosomes, including the Z chromosome. The most evolutionary notable finding was a Robertsonian translocation between the microchromosome 17 and the Z chromosome, a rare event in birds. Additionally, the simple short repeats (SSRs) tested here were preferentially accumulated in the microchromosomes and in the Z and W chromosomes, showing no relationship with the constitutive heterochromatin regions, except in the W chromosome. Taken together, our results suggest that the avian sex chromosome is more complex than previously postulated and revealed the role of microchromosomes in the avian sex chromosome evolution, especially cuckoos.

Journal ArticleDOI
TL;DR: Dysploid variation, polyploidy and, to a lesser extend, hybridization may be the main factors in chromosome number evolution of the family Marantaceae.
Abstract: Karyotype analyses in species of the family Marantaceae (550 species, 31 genera) were conducted to shed light on the reported strong variation of chromosome number and size and the occurrence of polyploidy. Special attention was paid to the alterations in basic chromosome numbers, karyotypes and ploidy levels. Taxon sampling covered the whole distribution area of Marantaceae in Africa, Asia and America. We applied mitotic chromosome counting using conventional rapid squash techniques in 43 accessions (39 species, 16 genera), evaluated literature records for 51 species and conducted karyotype analyses. Eleven different somatic chromosome numbers were found (2n = 20, 22, 24, 26, 28, 33, 44, 36, 52, 65, 72). Based on the presumed basic chromosome numbers of x = 9, 10, 11, 12, 13, 14, this may correspond to diploid, triploid, tetraploid, pentaploid and octoploid levels, respectively. Dysploid variation, polyploidy and, to a lesser extend, hybridization may be the main factors in chromosome number evolution of the family. Our results also point to a certain degree of association with species diversification and geographical patterns.

Journal ArticleDOI
17 Jan 2020-Zoology
TL;DR: Using a combination of molecular and FISH analyses, it is proved that male specific Restriction site-Associated DNA sequences (RADseq) isolated in C. calyptratus are conserved in C.'s chamaeleon and located the putative XY chromosomes on the second chromosome pair.

Journal ArticleDOI
TL;DR: The hypothesis that renal oncocytoma exhibit three principal cytogenetic categories, which may have different roles in initiation and/or progression is supported.
Abstract: The cytogenetic alterations in renal oncocytoma (RO) are poorly understood. We analyzed 130 consecutive RO for karyotypic alterations. Clonal chromosome abnormalities were identified in 63 (49%) cases, which could be categorized into three classes of mutually exclusive cytogenetic categories. Class 1 (N = 20) RO had diploid karyotypes with characteristic 11q13 rearrangement in balanced translocations with 10 or more different chromosome partners in all cases. We identified recurrent translocation partners at 5q35, 6p21, 9p24, 11p13-14, and 11q23, and confirmed that CCND1 gene rearrangement at 11q13 utilizing fluorescence in situ hybridization (FISH). Class 2 RO (N = 25) exhibited hypodiploid karyotypes with loss of chromosome 1 and/or losses of Y in males and X in females in all cases. The class 3 tumors comprising of 18 cases showed diverse types of abnormalities with the involvement of two or more chromosomes exclusive of abnormalities seen in classes 1 and 2 tumors. Furthermore, karyotypically uninformative cases were subjected to FISH analysis to identify classes 1 and 2 abnormalities. In this group, we found similar frequencies of CCND1 rearrangement, loss of chromosome 1 or Y as with karyotypically abnormal cases. We validated our results against 91 tumors from the Mitelman database. Correlation of clinical data with all the three classes of ROs showed no clear evidence of overall patient survival. Our findings support the hypothesis that RO exhibit three principal cytogenetic categories, which may have different roles in initiation and/or progression. These cytogenetic markers provide a key tool in the diagnostic evaluation of RO.

Journal ArticleDOI
02 Apr 2020-Genes
TL;DR: This study presents a primarily qualitative analysis of contacts of non-homologous chromosomes by short arms, during meiotic prophase I in the mole vole, Ellobius alaicus, a species with a variable karyotype, due to Robertsonian translocations, and proposes to change the translocation mechanism model to ‘contact first in meiosis’.
Abstract: Robertsonian translocations are common chromosomal alterations. Chromosome variability affects human health and natural evolution. Despite the significance of such mutations, no mechanisms explaining the emergence of such translocations have yet been demonstrated. Several models have explored possible changes in interphase nuclei. Evidence for non-homologous chromosomes end joining in meiosis is scarce, and is often limited to uncovering mechanisms in damaged cells only. This study presents a primarily qualitative analysis of contacts of non-homologous chromosomes by short arms, during meiotic prophase I in the mole vole, Ellobius alaicus, a species with a variable karyotype, due to Robertsonian translocations. Immunocytochemical staining of spermatocytes demonstrated the presence of four contact types for non-homologous chromosomes in meiotic prophase I: (1) proximity, (2) touching, (3) anchoring/tethering, and (4) fusion. Our results suggest distinct mechanisms for chromosomal interactions in meiosis. Thus, we propose to change the translocation mechanism model from ‘contact first’ to ‘contact first in meiosis’.

Journal ArticleDOI
TL;DR: Despite strong conservation of canonical telomeres, the results show that they can be substituted by more complex, species-specific sequences, as represented by centromeres, and the assembly provides a robust platform for investigations that require complete genome representation.
Abstract: Chromosome-level assemblies are indispensable for accurate gene prediction, synteny assessment, and understanding higher-order genome architecture. Reference and draft genomes of key helminth species have been published, but little is yet known about the biology of their chromosomes. Here, we present the complete genome of the tapeworm Hymenolepis microstoma, providing a reference quality, end-to-end assembly that represents the first fully assembled genome of a spiralian/lophotrochozoan, revealing new insights into chromosome evolution. Long-read sequencing and optical mapping data were added to previous short-read data enabling complete re-assembly into six chromosomes, consistent with karyology. Small genome size (169 Mb) and lack of haploid variation (1 SNP/3.2 Mb) contributed to exceptionally high contiguity with only 85 gaps remaining in regions of low complexity sequence. Resolution of repeat regions reveals novel gene expansions, micro-exon genes, and spliced leader trans-splicing, and illuminates the landscape of transposable elements, explaining observed length differences in sister chromatids. Syntenic comparison with other parasitic flatworms shows conserved ancestral linkage groups indicating that the H. microstoma karyotype evolved through fusion events. Strikingly, the assembly reveals that the chromosomes terminate in centromeric arrays, indicating that these motifs play a role not only in segregation, but also in protecting the linear integrity and full lengths of chromosomes. Despite strong conservation of canonical telomeres, our results show that they can be substituted by more complex, species-specific sequences, as represented by centromeres. The assembly provides a robust platform for investigations that require complete genome representation.

Journal ArticleDOI
TL;DR: Genomic and transcriptomic sequence data is used to identify young sex chromosomes in two closely related muscid species and provide evidence that the nascent sex chromosomes of horn fly and stable fly were derived independently from each other and from the youngSex chromosomes of the closely related house fly (Musca domestica).
Abstract: Sex chromosomes and sex determining genes can evolve fast, with the sex-linked chromosomes often differing between closely related species. Population genetics theory has been developed and tested to explain the rapid evolution of sex chromosomes and sex determination. However, we do not know why the sex chromosomes are divergent in some taxa and conserved in others. Addressing this question requires comparing closely related taxa with conserved and divergent sex chromosomes to identify biological features that could explain these differences. Cytological karyotypes suggest that muscid flies (e.g., house fly) and blow flies are such a taxonomic pair. The sex chromosomes appear to differ across muscid species, whereas they are conserved across blow flies. Despite the cytological evidence, we do not know the extent to which muscid sex chromosomes are independently derived along different evolutionary lineages. To address that question, we used genomic and transcriptomic sequence data to identify young sex chromosomes in two closely related muscid species, horn fly (Haematobia irritans) and stable fly (Stomoxys calcitrans). We provide evidence that the nascent sex chromosomes of horn fly and stable fly were derived independently from each other and from the young sex chromosomes of the closely related house fly (Musca domestica). We present three different scenarios that could have given rise to the sex chromosomes of horn fly and stable fly, and we describe how the scenarios could be distinguished. Distinguishing between these scenarios in future work could identify features of muscid genomes that promote sex chromosome divergence.

Journal ArticleDOI
TL;DR: It is shown that four Aristelliger species, spanning the phylogenetic breadth of the genus, share a conserved ZZ/ZW system syntenic with avian chromosome 2, and that the Z and W chromosomes are highly differentiated despite their overall morphological similarity.
Abstract: Current understanding of sex chromosome evolution is largely dependent on species with highly degenerated, heteromorphic sex chromosomes, but by studying species with recently evolved or morphologically indistinct sex chromosomes we can greatly increase our understanding of sex chromosome origins, degeneration and turnover. Here, we examine sex chromosome evolution and stability in the gecko genus Aristelliger. We used RADseq to identify sex-specific markers and show that four Aristelliger species, spanning the phylogenetic breadth of the genus, share a conserved ZZ/ZW system syntenic with avian chromosome 2. These conserved sex chromosomes contrast with many other gecko sex chromosome systems by showing a degree of stability among a group known for its dynamic sex-determining mechanisms. Cytogenetic data from A. expectatus revealed homomorphic sex chromosomes with an accumulation of repetitive elements on the W chromosome. Taken together, the large number of female-specific A. praesignis RAD markers and the accumulation of repetitive DNA on the A. expectatus W karyotype suggest that the Z and W chromosomes are highly differentiated despite their overall morphological similarity. We discuss this paradoxical situation and suggest that it may, in fact, be common in many animal species.

Journal ArticleDOI
10 Oct 2020-Genes
TL;DR: Harttia catfishes present great species diversity and remarkable cytogenetic variation, including different sex chromosome systems, which makes them a suitable model for evolutionary studies focusing on karyotype differentiation and sex chromosome evolution among lower vertebrates.
Abstract: The armored Harttia catfishes present great species diversity and remarkable cytogenetic variation, including different sex chromosome systems. Here we analyzed three new species, H. duriventris, H. villasboas and H. rondoni, using both conventional and molecular cytogenetic techniques (Giemsa-staining and C-banding), including the mapping of repetitive DNAs using fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH) experiments. Both H. duriventris and H. villasboas have 2n = ♀56/♂55 chromosomes, and an X1X1X2X2 /X1X2Y sex chromosome system, while a proto or neo-XY system is proposed for H. rondoni (2n = 54♀♂). Single motifs of 5S and 18S rDNA occur in all three species, with the latter being also mapped in the sex chromosomes. The results confirm the general evolutionary trend that has been noticed for the genus: an extensive variation on their chromosome number, single sites of rDNA sequences and the occurrence of multiple sex chromosomes. Comparative genomic analyses with another congeneric species, H. punctata, reveal that the X1X2Y sex chromosomes of these species share the genomic contents, indicating a probable common origin. The remarkable karyotypic variation, including sex chromosomes systems, makes Harttia a suitable model for evolutionary studies focusing on karyotype differentiation and sex chromosome evolution among lower vertebrates.

Journal ArticleDOI
TL;DR: Comparison in situ hybridization with chromosome-arm-specific oligo painting probes was used for comparative karyotype analysis in a set of wild Musa species and edible banana clones and revealed large differences in chromosome structure, discriminating individual accessions, which permitted the identification of putative progenitors of cultivated clones and clarified the genomic constitution and evolution of aneuploid banana clones.
Abstract: Edible banana cultivars are diploid, triploid, or tetraploid hybrids, which originated by natural cross hybridization between subspecies of diploid Musa acuminata, or between M. acuminata and diploid Musa balbisiana. The participation of two other wild diploid species Musa schizocarpa and Musa textilis was also indicated by molecular studies. The fusion of gametes with structurally different chromosome sets may give rise to progenies with structural chromosome heterozygosity and reduced fertility due to aberrant chromosome pairing and unbalanced chromosome segregation. Only a few translocations have been classified on the genomic level so far, and a comprehensive molecular cytogenetic characterization of cultivars and species of the family Musaceae is still lacking. Fluorescence in situ hybridization (FISH) with chromosome-arm-specific oligo painting probes was used for comparative karyotype analysis in a set of wild Musa species and edible banana clones. The results revealed large differences in chromosome structure, discriminating individual accessions. These results permitted the identification of putative progenitors of cultivated clones and clarified the genomic constitution and evolution of aneuploid banana clones, which seem to be common among the polyploid banana accessions. New insights into the chromosome organization and structural chromosome changes will be a valuable asset in breeding programs, particularly in the selection of appropriate parents for cross hybridization.

Journal ArticleDOI
TL;DR: This study reveals the genomic structure, composition and function of Bs, which provide new insights for theories of B chromosome evolution, and detects unique sequences occurring exclusively on Bs and discovered various evolutionary patterns of genomic rearrangements associated to Bs.
Abstract: One of the biggest challenges in chromosome biology is to understand the occurrence and complex genetics of the extra, non-essential karyotype elements, commonly known as supernumerary or B chromosomes (Bs). The non-Mendelian inheritance and non-pairing abilities of B chromosomes make them an interesting model for genomics studies, thus bringing to bear different questions about their genetic composition, evolutionary survival, maintenance and functional role inside the cell. This study uncovers these phenomena in multiple species that we considered as representative organisms of both vertebrate and invertebrate models for B chromosome analysis. We sequenced the genomes of three animal species including two fishes Astyanax mexicanus and Astyanax correntinus, and a grasshopper Abracris flavolineata, each with and without Bs, and identified their B-localized genes and repeat contents. We detected unique sequences occurring exclusively on Bs and discovered various evolutionary patterns of genomic rearrangements associated to Bs. In situ hybridization and quantitative polymerase chain reactions further validated our genomic approach confirming detection of sequences on Bs. The functional annotation of B sequences showed that the B chromosome comprises regions of gene fragments, novel genes, and intact genes, which encode a diverse set of functions related to important biological processes such as metabolism, morphogenesis, reproduction, transposition, recombination, cell cycle and chromosomes functions which might be important for their evolutionary success. This study reveals the genomic structure, composition and function of Bs, which provide new insights for theories of B chromosome evolution. The selfish behavior of Bs seems to be favored by gained genes/sequences.