scispace - formally typeset
Search or ask a question

Showing papers by "Johns Hopkins University School of Medicine published in 2006"


Journal ArticleDOI
TL;DR: An automated labeling system for subdividing the human cerebral cortex into standard gyral-based neuroanatomical regions is both anatomically valid and reliable and may be useful for both morphometric and functional studies of the cerebral cortex.

9,940 citations


Journal ArticleDOI
16 Nov 2006-Nature
TL;DR: It is shown that resveratrol shifts the physiology of middle-aged mice on a high-calorie diet towards that of mice onA standard diet and significantly increases their survival and point to new approaches for treating obesity-related disorders and diseases of ageing.
Abstract: Resveratrol (3,5,49-trihydroxystilbene) extends the lifespan of diverse species including Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. In these organisms, lifespan extension is dependent on Sir2, a conserved deacetylase proposed to underlie the beneficial effects of caloric restriction. Here we show that resveratrol shifts the physiology of middle-aged mice on a high-calorie diet towards that of mice on a standard diet and significantly increases their survival. Resveratrol produces changes associated with longer lifespan, including increased insulin sensitivity, reduced insulin-like growth factor-1 (IGF-I) levels, increased AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-c coactivator 1a (PGC-1a) activity, increased mitochondrial number, and improved motor function. Parametric analysis of gene set enrichment revealed that resveratrol opposed the effects of the high-calorie diet in 144 out of 153 significantly altered pathways. These data show that improving general health in mammals using small molecules is an attainable goal, and point to new approaches for treating obesity-related disorders and diseases of ageing.

4,088 citations


Journal ArticleDOI
TL;DR: A hypoxia-induced metabolic switch that shunts glucose metabolites from the mitochondria to glycolysis to maintain ATP production and to prevent toxic ROS production is revealed.

3,193 citations



Journal ArticleDOI
01 Dec 2006-Science
TL;DR: A highly significant association is found between Crohn's disease and the IL23R gene on chromosome 1p31, which encodes a subunit of the receptor for the proinflammatory cytokine interleukin-23, which prioritize this signaling pathway as a therapeutic target in inflammatory bowel disease.
Abstract: The inflammatory bowel diseases Crohn's disease and ulcerative colitis are common, chronic disorders that cause abdominal pain, diarrhea, and gastrointestinal bleeding. To identify genetic factors that might contribute to these disorders, we performed a genome-wide association study. We found a highly significant association between Crohn's disease and the IL23R gene on chromosome 1p31, which encodes a subunit of the receptor for the proinflammatory cytokine interleukin-23. An uncommon coding variant (rs11209026, c.1142G>A, p.Arg381Gln) confers strong protection against Crohn's disease, and additional noncoding IL23R variants are independently associated. Replication studies confirmed IL23R associations in independent cohorts of patients with Crohn's disease or ulcerative colitis. These results and previous studies on the proinflammatory role of IL-23 prioritize this signaling pathway as a therapeutic target in inflammatory bowel disease.

2,937 citations



Journal ArticleDOI
TL;DR: This work suggests that non-neoplastic but epigenetically disrupted stem/progenitor cells might be a crucial target for cancer risk assessment and chemoprevention.
Abstract: Cancer is widely perceived as a heterogeneous group of disorders with markedly different biological properties, which are caused by a series of clonally selected genetic changes in key tumour-suppressor genes and oncogenes. However, recent data suggest that cancer has a fundamentally common basis that is grounded in a polyclonal epigenetic disruption of stem/progenitor cells, mediated by 'tumour-progenitor genes'. Furthermore, tumour cell heterogeneity is due in part to epigenetic variation in progenitor cells, and epigenetic plasticity together with genetic lesions drives tumour progression. This crucial early role for epigenetic alterations in cancer is in addition to epigenetic alterations that can substitute for genetic variation later in tumour progression. Therefore, non-neoplastic but epigenetically disrupted stem/progenitor cells might be a crucial target for cancer risk assessment and chemoprevention.

1,806 citations


Journal ArticleDOI
TL;DR: Investigators of large, worldwide, collaborative studies of the spectrum of Guillain-Barré syndrome are accruing data for clinical and biological databases to inform the development of outcome predictors and disease biomarkers, which is transforming the clinical and scientific landscape of acute autoimmune neuropathies.

1,795 citations


Journal ArticleDOI
07 Apr 2006-Science
TL;DR: Losartan, a drug already in clinical use for hypertension, merits investigation as a therapeutic strategy for patients with Marfan syndrome and has the potential to prevent the major life-threatening manifestation of this disorder.
Abstract: Aortic aneurysm and dissection are manifestations of Marfan syndrome (MFS), a disorder caused by mutations in the gene that encodes fibrillin-1. Selected manifestations of MFS reflect excessive signaling by the transforming growth factor–β (TGF-β) family of cytokines. We show that aortic aneurysm in a mouse model of MFS is associated with increased TGF-β signaling and can be prevented by TGF-β antagonists such as TGF-β–neutralizing antibody or the angiotensin II type 1 receptor (AT1) blocker, losartan. AT1 antagonism also partially reversed noncardiovascular manifestations of MFS, including impaired alveolar septation. These data suggest that losartan, a drug already in clinical use for hypertension, merits investigation as a therapeutic strategy for patients with MFS and has the potential to prevent the major life-threatening manifestation of this disorder.

1,620 citations


Journal ArticleDOI
07 Sep 2006-Neuron
TL;DR: Diffusion tensor imaging (DTI) is a recently developed MRI technique that can measure macroscopic axonal organization in nervous system tissues and several applications are introduced, including visualization of axonal tracts in myelin and axonal injuries as well as human brain and mouse embryonic development.

1,593 citations


Journal ArticleDOI
TL;DR: It is demonstrated that MRI-derived cortical thickness measures are highly reliable when MRI instrument and data processing factors are controlled but that it is important to consider these factors in the design of multi-site or longitudinal studies, such as clinical drug trials.

Journal ArticleDOI
TL;DR: How miRNAs influence tumorigenesis by acting as oncogenes and tumour suppressors is discussed.
Abstract: MicroRNAs (miRNAs) are a recently discovered class of approximately 18-24 nucleotide RNA molecules that negatively regulate target mRNAs. All studied multicellular eukaryotes utilise miRNAs to regulate basic cellular functions including proliferation, differentiation, and death. It is now apparent that abnormal miRNA expression is a common feature of human malignancies. In this review, we will discuss how miRNAs influence tumorigenesis by acting as oncogenes and tumour suppressors.

Journal ArticleDOI
TL;DR: Molecular advances in this area may reveal tactics to exploit the cancer cell's "sweet tooth" for cancer therapy and renewed discussions about its exact role as cause, correlate, or facilitator of cancer.
Abstract: More than 80 years ago, the renowned biochemist Otto Warburg described how cancer cells avidly consume glucose and produce lactic acid under aerobic conditions. Recent studies arguing that cancer cells benefit from this phenomenon, termed the Warburg effect, have renewed discussions about its exact role as cause, correlate, or facilitator of cancer. Molecular advances in this area may reveal tactics to exploit the cancer cell's "sweet tooth" for cancer therapy.

Journal ArticleDOI
02 Feb 2006-Nature
TL;DR: This study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.
Abstract: Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (gamma-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

Journal ArticleDOI
05 Oct 2006-Neuron
TL;DR: This review focuses on how both human studies and animal models are helping to elucidate the mechanisms underlying neuropathic pain, one of the surprisingly common disorders.

Journal ArticleDOI
08 Sep 2006-Cell
TL;DR: It is shown that SIRT4 functions in beta cell mitochondria to repress the activity of GDH by ADP-ribosylation, thereby downregulating insulin secretion in response to amino acids, effects that are alleviated during CR.

Journal ArticleDOI
TL;DR: The AATF has prepared this review to highlight pathogens that are frequently resistant to licensed antimicrobials and for which few, if any, potentially effective drugs are identifiable in the late-stage development pipeline.
Abstract: The Antimicrobial Availability Task Force (AATF) of the Infectious Diseases Society of America (IDSA) has viewed with concern the decreasing investment by major pharmaceutical companies in antimicrobial research and development. Although smaller companies are stepping forward to address this gap, their success is uncertain. The IDSA proposed legislative and other federal solutions to this emerging public health problem in its July 2004 policy report "Bad Bugs, No Drugs: As Antibiotic R&D Stagnates, a Public Health Crisis Brews." At this time, the legislative response cannot be predicted. To emphasize further the urgency of the problem for the benefit of legislators and policy makers and to capture the ongoing frustration our clinician colleagues experience in their frequent return to an inadequate medicine cabinet, the AATF has prepared this review to highlight pathogens that are frequently resistant to licensed antimicrobials and for which few, if any, potentially effective drugs are identifiable in the late-stage development pipeline.

Journal ArticleDOI
TL;DR: Both genomic and functional analyses of c-Myc targets suggest that while c- myc behaves as a global regulator of transcription, groups of genes involved in cell cycle regulation, metabolism, ribosome biogenesis, protein synthesis, and mitochondrial function are over-represented in the c-myc target gene network.

Journal ArticleDOI
TL;DR: When administered under supportive conditions, psilocybin occasioned experiences similar to spontaneously occurring mystical experiences, and the ability to occasion such experiences prospectively will allow rigorous scientific investigations of their causes and consequences.
Abstract: Rationale Although psilocybin has been used for centuries for religious purposes, little is known scientifically about its acute and persisting effects. Objectives This double-blind study evaluated the acute and longer-term psychological effects of a high dose of psilocybin relative to a comparison compound administered under comfortable, supportive conditions. Materials and methods The participants were hallucinogennaive adults reporting regular participation in religious or spiritual activities. Two or three sessions were conducted at 2-month intervals. Thirty volunteers received orally administered psilocybin (30 mg/70 kg) and methylphenidate hydrochloride (40 mg/70 kg) in counterbalanced order. To obscure the study design, six additional volunteers received methylphenidate in the first two sessions and unblinded psilocybin in a third session. The 8-h sessions were conducted individually. Volunteers were encouraged to close their eyes and direct their attention inward. Study monitors rated volunteers’ behavior during sessions. Volunteers completed questionnaires assessing drug effects and mystical experience immediately after and 2 months after sessions. Community observers rated changes in the volunteer’s attitudes and behavior. Results Psilocybin produced a range of acute perceptual changes, subjective experiences, and labile moods including anxiety. Psilocybin also increased measures of mystical experience. At 2 months, the volunteers rated the psilocybin experience as having substantial personal meaning and spiritual significance and attributed to the experience sustained positive changes in attitudes and behavior consistent with changes rated by community observers. Conclusions When administered under supportive conditions, psilocybin occasioned experiences similar to spontaneously occurring mystical experiences. The ability to occasion such experiences prospectively will allow rigorous scientific investigations of their causes and consequences.

Journal ArticleDOI
TL;DR: Altered in miRNA expression contribute to tumor growth and response to chemotherapy, and Aberrantly expressed miRNA or their targets will provide mechanistic insight and therapeutic targets for cholangiocarcinoma.

Journal ArticleDOI
TL;DR: It is demonstrated that within a timescale of minutes, two distinct fast-acting processes drive motor adaptation, and this two-state learning system makes the surprising prediction of spontaneous recovery if error feedback is clamped at zero following an adaptation-extinction training episode.
Abstract: Multiple processes may contribute to motor skill acquisition, but it is thought that many of these processes require sleep or the passage of long periods of time ranging from several hours to many days or weeks. Here we demonstrate that within a timescale of minutes, two distinct fast-acting processes drive motor adaptation. One process responds weakly to error but retains information well, whereas the other responds strongly but has poor retention. This two-state learning system makes the surprising prediction of spontaneous recovery (or adaptation rebound) if error feedback is clamped at zero following an adaptation-extinction training episode. We used a novel paradigm to experimentally confirm this prediction in human motor learning of reaching, and we show that the interaction between the learning processes in this simple two-state system provides a unifying explanation for several different, apparently unrelated, phenomena in motor adaptation including savings, anterograde interference, spontaneous recovery, and rapid unlearning. Our results suggest that motor adaptation depends on at least two distinct neural systems that have different sensitivity to error and retain information at different rates.

Journal ArticleDOI
TL;DR: A versatile resource program was developed for diffusion tensor image (DTI) computation and fiber tracking, based on the Fiber Assignment by Continuous Tracking (FACT) algorithm and a brute-force reconstruction approach.

Journal ArticleDOI
TL;DR: The Lupus Survival Study Group data are reviewed and particularly the data from the State University of New York Health Science Center at Brooklyn, NY is reviewed.
Abstract: Objective. To examine mortality rates in the largest systemic lupus erythematosus (SLE) cohort ever assembled. Methods. Our sample was a multisite international SLE cohort (23 centers, 9,547 patients). Deaths were ascertained by vital statistics registry linkage. Standardized mortality ratio (SMR; ratio of deaths observed to deaths expected) estimates were calculated for-all deaths and by cause. The effects of sex, age, SLE duration, race, and calendar-year periods were determined. Results. The overall SMR was 2.4 (95% confidence interval 2.3-2.5). Particularly high mortality was seen for circulatory disease, infections, renal disease, non-Hodgkin's lymphoma, and lung cancer. The highest SMR estimates were seen in patient groups characterized by female sex, younger age, SLE duration < 1 year, or black/African American race. There was a dramatic decrease in total SMR estimates across calendar-year periods, which was demonstrable for specific causes including death due to infections and death due to renal disorders. However, the SMR due to circulatory diseases tended to increase slightly from the 1970s to the year 2001. Conclusion. Our data from a very large multicenter international cohort emphasize what has been demonstrated previously in smaller samples. These results highlight the increased mortality rate in SLE patients compared with the general population, and they suggest particular risk associated with female sex, younger age, shorter SLE duration, and black/African American race. The risk for certain types of deaths, primarily related to lupus activity (such as renal disease), has decreased over time, while the risk for deaths due to circulatory disease does not appear to have diminished. (Less)

Journal ArticleDOI
TL;DR: Staining patterns after monocular enucleation revealed that the projections of these cells are overwhelmingly crossed except for the projection to the SCN, which is bilaterally symmetrical, and that other ganglion cells do contribute at least some retinal input to these targets.
Abstract: A rare type of ganglion cell in mammalian retina is directly photosensitive. These novel retinal photoreceptors express the photopigment melanopsin. They send axons directly to the suprachiasmatic nucleus (SCN), intergeniculate leaflet (IGL), and olivary pretectal nucleus (OPN), thereby contributing to photic synchronization of circadian rhythms and the pupillary light reflex. Here, we sought to characterize more fully the projections of these cells to the brain. By targeting tau-lacZ to the melanopsin gene locus in mice, ganglion cells that would normally express melanopsin were induced to express, instead, the marker enzyme beta-galactosidase. Their axons were visualized by X-gal histochemistry or anti-beta-galactosidase immunofluorescence. Established targets were confirmed, including the SCN, IGL, OPN, ventral division of the lateral geniculate nucleus (LGv), and preoptic area, but the overall projections were more widespread than previously recognized. Targets included the lateral nucleus, peri-supraoptic nucleus, and subparaventricular zone of the hypothalamus, medial amygdala, margin of the lateral habenula, posterior limitans nucleus, superior colliculus, and periaqueductal gray. There were also weak projections to the margins of the dorsal lateral geniculate nucleus. Co-staining with the cholera toxin B subunit to label all retinal afferents showed that melanopsin ganglion cells provide most of the retinal input to the SCN, IGL, and lateral habenula and much of that to the OPN, but that other ganglion cells do contribute at least some retinal input to these targets. Staining patterns after monocular enucleation revealed that the projections of these cells are overwhelmingly crossed except for the projection to the SCN, which is bilaterally symmetrical.

Journal ArticleDOI
TL;DR: While the bone morphological response to mechanical strains is reduced in adults relative to juveniles, claims that adult morphology reflects only juvenile loadings are greatly exaggerated, and traditional geometric parameters still give the best available estimates of in vivo mechanical competence.
Abstract: "Wolff's law" is a concept that has sometimes been misrepresented, and frequently misunderstood, in the anthropological literature. Although it was originally formulated in a strict mathematical sense that has since been discredited, the more general concept of "bone functional adaptation" to mechanical loading (a designation that should probably replace "Wolff's law") is supported by much experimental and observational data. Objections raised to earlier studies of bone functional adaptation have largely been addressed by more recent and better-controlled studies. While the bone morphological response to mechanical strains is reduced in adults relative to juveniles, claims that adult morphology reflects only juvenile loadings are greatly exaggerated. Similarly, while there are important genetic influences on bone development and on the nature of bone's response to mechanical loading, variations in loadings themselves are equally if not more important in determining variations in morphology, especially in comparisons between closely related individuals or species. The correspondence between bone strain patterns and bone structure is variable, depending on skeletal location and the general mechanical environment (e.g., distal vs. proximal limb elements, cursorial vs. noncursorial animals), so that mechanical/behavioral inferences based on structure alone should be limited to corresponding skeletal regions and animals with similar basic mechanical designs. Within such comparisons, traditional geometric parameters (such as second moments of area and section moduli) still give the best available estimates of in vivo mechanical competence. Thus, when employed with appropriate caution, these features may be used to reconstruct mechanical loadings and behavioral differences within and between past populations.

Journal ArticleDOI
TL;DR: Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging is traced.
Abstract: Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging

Journal ArticleDOI
TL;DR: A new high-resolution atlas template of the human, cerebellum and brainstem, based on the anatomy of 20 young healthy individuals, which improves the alignment of individual fissures, reducing their spatial spread by 60%, and improves the overlap of the deep cerebellar nuclei.

Journal ArticleDOI
TL;DR: Understanding of the normative biology of astrocytes has been aided by the development of animal models in which astroCyte-specific proteins and pathways have been manipulated, and mouse models of neurodegenerative diseases have revealedAstrocyte- specific pathologies that contribute to Neurodegeneration.
Abstract: The term neurodegenerative disease refers to the principal pathology associated with disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease and Parkinson's disease, and it is presumed that neurodegeneration results in the clinical findings seen in patients with these diseases. Decades of pathological and physiological studies have focused on neuronal abnormalities in these disorders, but it is becoming increasingly evident that astrocytes are also important players in these and other neurological disorders. Our understanding of the normative biology of astrocytes has been aided by the development of animal models in which astrocyte-specific proteins and pathways have been manipulated, and mouse models of neurodegenerative diseases have also revealed astrocyte-specific pathologies that contribute to neurodegeneration. These models have led to the development of targeted therapies for pathways in which astrocytes participate, and this research should ultimately influence the clinical treatment of neurodegenerative disorders.

Journal ArticleDOI
TL;DR: Depression is common and persistent in AMI survivors, likely reflecting treatment of somatic symptoms, and prevalence varies depending on assessment method.
Abstract: OBJECTIVES: To assess the prevalence and persistence of depression in patients with acute myocardial infarction (AMI) and the relationship between assessment modality and prevalence. DATA SOURCES: MEDLINE®, Cochrane, CINAHL®, PsycINFO®, and EMBASE®. REVIEW METHODS: A comprehensive search was conducted in March 2004 to identify original research studies published since 1980 that used a standardized interview or validated questionnaire to assess depression. The search was augmented by hand searching of selected journals from October 2003 through April 2004 and references of identified articles and reviews. Studies were excluded if only an abstract was provided, if not in English, or if depression was not measured by a validated method. RESULTS: Major depression was identified in 19.8% (95% confidence interval [CI] 19.1% to 20.6%) of patients using structured interviews (N=10,785, 8 studies). The prevalence of significant depressive symptoms based on a Beck Depression Inventory score ≥10 was 31.1% (CI 29.2% to 33.0%; N=2,273, 6 studies), using a Hospital Anxiety and Depression Scale (HADS) score ≥8%, 15.5% (CI 13.2% to 18.0%; N=863, 4 studies), and with a HADS score ≥11%, 7.3% (CI 5.5% to 9.3%; N=830, 4 studies). Although a significant proportion of patients continued to be depressed in the year after discharge, the limited number of studies and variable follow-up times precluded specification of prevalence rates at given time points. CONCLUSIONS: Depression is common and persistent in AMI survivors. Prevalence varies depending on assessment method, likely reflecting treatment of somatic symptoms.

Journal ArticleDOI
09 Nov 2006-Neuron
TL;DR: It is demonstrated that Arc/Arg3.1 protein interacts with dynamin and specific isoforms of endophilin to enhance receptor endocytosis and likely contributes to late-phase synaptic plasticity and memory consolidation.