scispace - formally typeset
Open AccessJournal ArticleDOI

Host microbiota constantly control maturation and function of microglia in the CNS

Reads0
Chats0
TLDR
It is determined that short-chain fatty acids (SCFA), microbiota-derived bacterial fermentation products, regulated microglia homeostasis and mice deficient for the SCFA receptor FFAR2 mirroredmicroglia defects found under GF conditions, suggesting that host bacteria vitally regulate microglian maturation and function.
Abstract
As the tissue macrophages of the CNS, microglia are critically involved in diseases of the CNS. However, it remains unknown what controls their maturation and activation under homeostatic conditions. We observed substantial contributions of the host microbiota to microglia homeostasis, as germ-free (GF) mice displayed global defects in microglia with altered cell proportions and an immature phenotype, leading to impaired innate immune responses. Temporal eradication of host microbiota severely changed microglia properties. Limited microbiota complexity also resulted in defective microglia. In contrast, recolonization with a complex microbiota partially restored microglia features. We determined that short-chain fatty acids (SCFA), microbiota-derived bacterial fermentation products, regulated microglia homeostasis. Accordingly, mice deficient for the SCFA receptor FFAR2 mirrored microglia defects found under GF conditions. These findings suggest that host bacteria vitally regulate microglia maturation and function, whereas microglia impairment can be rectified to some extent by complex microbiota.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Gut microbiota and attention deficit hyperactivity disorder: new perspectives for a challenging condition.

TL;DR: The need to progress understanding regarding the role of the gut microbiota in ADHD is highlighted, since this could open new avenues for early intervention and improved management of the disease.
Journal ArticleDOI

Bacterial Signaling to the Nervous System through Toxins and Metabolites.

TL;DR: Several classes of physiologically important molecular interactions that occur between bacteria and the nervous system are highlighted, including molecules that act on enteric neurons to influence gastrointestinal motility, and metabolites that stimulate the "gut-brain axis" to alter neural circuits, autonomic function, and higher-order brain function and behavior.
Journal ArticleDOI

Microglia: Immune Regulators of Neurodevelopment.

TL;DR: This review examines both well-established and emerging literature and perspectives on microglia in the context of neurodevelopment, with a particular emphasis on the role of the host microbiome in influencing microglial function during health and disease states.
Journal ArticleDOI

Microbiota regulates visceral pain in the mouse

TL;DR: Findings indicate that the gut microbiota is required for the normal visceral pain sensation in germ-free mice.
References
More filters
Journal ArticleDOI

Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.

TL;DR: By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.
Journal ArticleDOI

The gut microbiota shapes intestinal immune responses during health and disease

TL;DR: Findings indicating that developmental aspects of the adaptive immune system are influenced by bacterial colonization of the gut are discussed, and the possibility that the mammalian immune system, which seems to be designed to control microorganisms, is in fact controlled by microorganisms is raised.
Journal ArticleDOI

Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages

TL;DR: Results identify microglia as an ontogenically distinct population in the mononuclear phagocyte system and have implications for the use of embryonically derived microglial progenitors for the treatment of various brain disorders.
Journal ArticleDOI

The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis

TL;DR: This study determined that short-chain fatty acids, gut microbiota–derived bacterial fermentation products, regulate the size and function of the colonic Treg pool and protect against colitis in a Ffar2-dependent manner in mice, revealing that a class of abundant microbial metabolites underlies adaptive immune microbiota coadaptation and promotes colonic homeostasis and health.
Journal ArticleDOI

GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists

TL;DR: GOrilla is a web-based application that identifies enriched GO terms in ranked lists of genes, without requiring the user to provide explicit target and background sets, and its unique features and advantages over other threshold free enrichment tools include rigorous statistics, fast running time and an effective graphical representation.
Related Papers (5)