scispace - formally typeset
Search or ask a question

Showing papers on "Functional genomics published in 2018"


Journal ArticleDOI
TL;DR: The user interface to GeneMANIA has recently been updated to make it more intuitive and make more efficient use of visual space, and the tool can now be used effectively on a variety of devices.
Abstract: GeneMANIA (http://genemania.org) is a flexible user-friendly web site for generating hypotheses about gene function, analyzing gene lists and prioritizing genes for functional assays. Given a query gene list, GeneMANIA finds functionally similar genes using a wealth of genomics and proteomics data. In this mode, it weights each functional genomic dataset according to its predictive value for the query. Another use of GeneMANIA is gene function prediction. Given a single query gene, GeneMANIA finds genes likely to share function with it based on their interactions with it. Enriched Gene Ontology categories among this set can point to the function of the gene. Nine organisms are currently supported (Arabidopsis thaliana, Caenorhabditis elegans, Danio rerio, Drosophila melanogaster, Escherichia coli, Homo sapiens, Mus musculus, Rattus norvegicus and Saccharomyces cerevisiae). Hundreds of data sets and hundreds of millions of interactions have been collected from GEO, BioGRID, IRefIndex and I2D, as well as organism-specific functional genomics data sets. Users can customize their search by selecting specific data sets to query and by uploading their own data sets to analyze. We have recently updated the user interface to GeneMANIA to make it more intuitive and make more efficient use of visual space. GeneMANIA can now be used effectively on a variety of devices.

540 citations


Journal ArticleDOI
31 Jan 2018-Nature
TL;DR: It is shown that the pervasive presence of multiple enhancers with similar activities near the same gene confers phenotypic robustness to loss-of-function mutations in individual enhancers.
Abstract: Distant-acting tissue-specific enhancers, which regulate gene expression, vastly outnumber protein-coding genes in mammalian genomes, but the functional importance of this regulatory complexity remains unclear Here we show that the pervasive presence of multiple enhancers with similar activities near the same gene confers phenotypic robustness to loss-of-function mutations in individual enhancers We used genome editing to create 23 mouse deletion lines and inter-crosses, including both single and combinatorial enhancer deletions at seven distinct loci required for limb development Unexpectedly, none of the ten deletions of individual enhancers caused noticeable changes in limb morphology By contrast, the removal of pairs of limb enhancers near the same gene resulted in discernible phenotypes, indicating that enhancers function redundantly in establishing normal morphology In a genetic background sensitized by reduced baseline expression of the target gene, even single enhancer deletions caused limb abnormalities, suggesting that functional redundancy is conferred by additive effects of enhancers on gene expression levels A genome-wide analysis integrating epigenomic and transcriptomic data from 29 developmental mouse tissues revealed that mammalian genes are very commonly associated with multiple enhancers that have similar spatiotemporal activity Systematic exploration of three representative developmental structures (limb, brain and heart) uncovered more than one thousand cases in which five or more enhancers with redundant activity patterns were found near the same gene Together, our data indicate that enhancer redundancy is a remarkably widespread feature of mammalian genomes that provides an effective regulatory buffer to prevent deleterious phenotypic consequences upon the loss of individual enhancers

444 citations


Journal ArticleDOI
Tao Pan1
TL;DR: The abundance, modification, and aminoacylation levels of tRNAs contribute to mRNA decoding in ways that reflect the cell type and its environment; however, how these factors work together to maximize translation efficiency remains to be understood.
Abstract: Transfer RNA (tRNA) is present at tens of millions of transcripts in a human cell and is the most abundant RNA in moles among all cellular RNAs. tRNA is also the most extensively modified RNA with, on an average, 13 modifications per molecule. The primary function of tRNA as the adaptor of amino acids and the genetic code in protein synthesis is well known. tRNA modifications play multi-faceted roles in decoding and other cellular processes. The abundance, modification, and aminoacylation (charging) levels of tRNAs contribute to mRNA decoding in ways that reflect the cell type and its environment; however, how these factors work together to maximize translation efficiency remains to be understood. tRNAs also interact with many proteins not involved in translation and this may coordinate translation activity and other processes in the cell. This review focuses on the modifications and the functional genomics of human tRNA and discusses future perspectives on the explorations of human tRNA biology.

241 citations


Journal ArticleDOI
21 Nov 2018-Nature
TL;DR: Genomic, epigenomic and transcriptomic data derived from the Mediterranean amphioxus provide insights into the evolution of the genomic regulatory landscape of chordates, and pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations.
Abstract: Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations.

209 citations


Journal ArticleDOI
TL;DR: Random displacement amplification sequencing (RamDA-seq) is described, the first full-length total RNA-sequencing method for single cells and shows high sensitivity to non-poly(A) RNA and near-complete full- lengths transcript coverage.
Abstract: Total RNA sequencing has been used to reveal poly(A) and non-poly(A) RNA expression, RNA processing and enhancer activity. To date, no method for full-length total RNA sequencing of single cells has been developed despite the potential of this technology for single-cell biology. Here we describe random displacement amplification sequencing (RamDA-seq), the first full-length total RNA-sequencing method for single cells. Compared with other methods, RamDA-seq shows high sensitivity to non-poly(A) RNA and near-complete full-length transcript coverage. Using RamDA-seq with differentiation time course samples of mouse embryonic stem cells, we reveal hundreds of dynamically regulated non-poly(A) transcripts, including histone transcripts and long noncoding RNA Neat1. Moreover, RamDA-seq profiles recursive splicing in >300-kb introns. RamDA-seq also detects enhancer RNAs and their cell type-specific activity in single cells. Taken together, we demonstrate that RamDA-seq could help investigate the dynamics of gene expression, RNA-processing events and transcriptional regulation in single cells. Total RNA sequencing has been used to profile poly(A) and non-poly(A) RNA expression, processing and the activity of enhancers. Here the authors develop RamDA-seq, a method for full-length total RNA sequencing in single cells.

182 citations



Journal ArticleDOI
TL;DR: It is shown that significant structural heterogeneity exists in comparison to the B73 reference genome at multiple scales, from transposon composition and copy number variation to single-nucleotide polymorphisms.
Abstract: The maize W22 inbred has served as a platform for maize genetics since the mid twentieth century. To streamline maize genome analyses, we have sequenced and de novo assembled a W22 reference genome using short-read sequencing technologies. We show that significant structural heterogeneity exists in comparison to the B73 reference genome at multiple scales, from transposon composition and copy number variation to single-nucleotide polymorphisms. The generation of this reference genome enables accurate placement of thousands of Mutator (Mu) and Dissociation (Ds) transposable element insertions for reverse and forward genetics studies. Annotation of the genome has been achieved using RNA-seq analysis, differential nuclease sensitivity profiling and bisulfite sequencing to map open reading frames, open chromatin sites and DNA methylation profiles, respectively. Collectively, the resources developed here integrate W22 as a community reference genome for functional genomics and provide a foundation for the maize pan-genome.

175 citations


Journal ArticleDOI
TL;DR: It is demonstrated that CRISPRi pooled screening as a high-throughput tool for identifying gene and phenotype associations in bacteria and that this tool is also effective for mapping phenotypes to non-coding RNAs (ncRNAs), as elucidated by a comprehensive tRNA-fitness map constructed here.
Abstract: To fully exploit the microbial genome resources, a high-throughput experimental platform is needed to associate genes with phenotypes at the genome level. We present here a novel method that enables investigation of the cellular consequences of repressing individual transcripts based on the CRISPR interference (CRISPRi) pooled screening in bacteria. We identify rules for guide RNA library design to handle the unique structure of prokaryotic genomes by tiling screening and construct an E. coli genome-scale guide RNA library (~60,000 members) accordingly. We show that CRISPRi outperforms transposon sequencing, the benchmark method in the microbial functional genomics field, when similar library sizes are used or gene length is short. This tool is also effective for mapping phenotypes to non-coding RNAs (ncRNAs), as elucidated by a comprehensive tRNA-fitness map constructed here. Our results establish CRISPRi pooled screening as a powerful tool for mapping complex prokaryotic genetic networks in a precise and high-throughput manner.

159 citations


Journal ArticleDOI
TL;DR: The use of functional genomics approaches that integrate transcriptomic, epigenetic, and endophenotype traits with systems biology to annotate genetic variants, and to facilitate discovery of AD risk genes are discussed.

156 citations


Journal ArticleDOI
TL;DR: This review highlights recent metagenomics studies, which provided a glimpse at the diversity of uncultivated viruses associated with the ubiquitous archaea in the oceans, including Thaumarchaeota, Marine Group II EuryarchAEota, and others, and discusses the origins and evolution of archaeal viruses.

144 citations


Journal ArticleDOI
TL;DR: It is found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells.
Abstract: Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression.

Journal ArticleDOI
TL;DR: The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation from functional genomics to clinical applications and inspires the development of other advanced neural network models for further improvement of genome annotations.
Abstract: In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the expression of genes. Thus, Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. The developments of high-throughput sequencing and machine learning technologies make it possible to predict cis-regulatory regions genome wide. Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES based on supervised deep learning approaches for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by bidirectional transcription data), and 26,000 candidate promoters (0.6% of the genome). The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation from functional genomics to clinical applications. The DECRES model demonstrates potentials of deep learning technologies when combined with high-throughput sequencing data, and inspires the development of other advanced neural network models for further improvement of genome annotations.

Journal ArticleDOI
TL;DR: A summary of functional genomics platforms, genes and molecular regulatory networks that regulate important agronomic traits, and newly developed tools for gene identification will greatly facilitate the development of green super rice.

Journal ArticleDOI
TL;DR: A comprehensive and accurate dataset of ∼2800 functionally characterized rice genes and ∼5000 members of different gene families is built by integrating data from available databases and reviewing every publication on rice functional genomic studies to enable further exploring of the crosslink between gene functions and natural variations in rice.
Abstract: Background As a main staple food, rice is also a model plant for functional genomic studies of monocots. Decoding of every DNA element of the rice genome is essential for genetic improvement to address increasing food demands. The past 15 years have witnessed extraordinary advances in rice functional genomics. Systematic characterization and proper deposition of every rice gene are vital for both functional studies and crop genetic improvement. Findings We built a comprehensive and accurate dataset of ∼2800 functionally characterized rice genes and ∼5000 members of different gene families by integrating data from available databases and reviewing every publication on rice functional genomic studies. The dataset accounts for 19.2% of the 39 045 annotated protein-coding rice genes, which provides the most exhaustive archive for investigating the functions of rice genes. We also constructed 214 gene interaction networks based on 1841 connections between 1310 genes. The largest network with 762 genes indicated that pleiotropic genes linked different biological pathways. Increasing degree of conservation of the flowering pathway was observed among more closely related plants, implying substantial value of rice genes for future dissection of flowering regulation in other crops. All data are deposited in the funRiceGenes database (https://funricegenes.github.io/). Functionality for advanced search and continuous updating of the database are provided by a Shiny application (http://funricegenes.ncpgr.cn/). Conclusions The funRiceGenes dataset would enable further exploring of the crosslink between gene functions and natural variations in rice, which can also facilitate breeding design to improve target agronomic traits of rice.

Journal ArticleDOI
01 Mar 2018-Genetics
TL;DR: The use of RNAi to study gene function in Drosophila with a particular focus on high-throughput screening methods applied in cultured cells is described and the generation and use of genome-scale RNAi libraries for tissue-specific knockdown analysis in vivo are reviewed.
Abstract: In the last decade, RNA interference (RNAi), a cellular mechanism that uses RNA-guided degradation of messenger RNA transcripts, has had an important impact on identifying and characterizing gene function. First discovered in Caenorhabditis elegans, RNAi can be used to silence the expression of genes through introduction of exogenous double-stranded RNA into cells. In Drosophila, RNAi has been applied in cultured cells or in vivo to perturb the function of single genes or to systematically probe gene function on a genome-wide scale. In this review, we will describe the use of RNAi to study gene function in Drosophila with a particular focus on high-throughput screening methods applied in cultured cells. We will discuss available reagent libraries and cell lines, methodological approaches for cell-based assays, and computational methods for the analysis of high-throughput screens. Furthermore, we will review the generation and use of genome-scale RNAi libraries for tissue-specific knockdown analysis in vivo and discuss the differences and similarities with the use of genome-engineering methods such as CRISPR/Cas9 for functional analysis.

Journal ArticleDOI
09 Mar 2018-eLife
TL;DR: A general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi is demonstrated and a high-confidence set of 150 genes affecting lipid accumulation is identified, including genes with predicted function in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification.
Abstract: The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted function in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. These results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi.

Journal ArticleDOI
TL;DR: BART is presented, a novel computational method and software package for predicting functional transcription factors that regulate a query gene set or associate with a query genomic profile, based on more than 6000 existing ChIP-seq datasets for over 400 factors in human or mouse.
Abstract: Summary Identification of functional transcription factors that regulate a given gene set is an important problem in gene regulation studies. Conventional approaches for identifying transcription factors, such as DNA sequence motif analysis, are unable to predict functional binding of specific factors and not sensitive enough to detect factors binding at distal enhancers. Here, we present binding analysis for regulation of transcription (BART), a novel computational method and software package for predicting functional transcription factors that regulate a query gene set or associate with a query genomic profile, based on more than 6000 existing ChIP-seq datasets for over 400 factors in human or mouse. This method demonstrates the advantage of utilizing publicly available data for functional genomics research. Availability and implementation BART is implemented in Python and available at http://faculty.virginia.edu/zanglab/bart. Supplementary information Supplementary data are available at Bioinformatics online.

Journal ArticleDOI
05 Jul 2018-Mbio
TL;DR: A clustered regularly interspaced short palindromic repeat–CRISPR-Cas9-mediated strategy for creating gene disruption mutants and the application of this technique for exploring roles of known and hypothesized virulence factors is reported on.
Abstract: The necrotrophic fungal plant pathogen Sclerotinia sclerotiorum is responsible for substantial global crop losses annually resulting in localized food insecurity and loss of livelihood. Understanding the basis of this broad-host-range and aggressive pathogenicity is hampered by the quantitative nature of both host resistance and pathogen virulence. To improve this understanding, methods for efficient functional gene characterization that build upon the existing complete S. sclerotiorum genome sequence are needed. Here, we report on the development of a clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (CRISPR-Cas9)-mediated strategy for creating gene disruption mutants and the application of this technique for exploring roles of known and hypothesized virulence factors. A key finding of this research is that transformation with a circular plasmid encoding Cas9, target single guide RNA (sgRNA), and a selectable marker resulted in a high frequency of targeted, insertional gene mutation. We observed that 100% of the mutants integrated large rearranged segments of the transforming plasmid at the target site facilitated by the nonhomologous end joining (NHEJ) repair pathway. This result was confirmed in multiple target sites within the same gene in three independent wild-type isolates of S. sclerotiorum and in a second independent gene. Targeting the previously characterized Ssoah1 gene allowed us to confirm the loss-of-function nature of the CRISPR-Cas9-mediated mutants and explore new aspects of the mutant phenotype. Applying this technology to create mutations in a second previously uncharacterized gene allowed us to determine the requirement for melanin accumulation in infection structure development and function.IMPORTANCE Fungi that cause plant diseases by rotting or blighting host tissue with limited specificity remain among the most difficult to control. This is largely due to the quantitative nature of host resistance and a limited understanding of fungal pathogenicity. A mechanistic understanding of pathogenicity requires the ability to manipulate candidate virulence genes to test hypotheses regarding their roles in disease development. Sclerotinia sclerotiorum is among the most notorious of these so-called broad-host-range necrotrophic plant pathogens. The work described here provides a new method for rapidly constructing gene disruption vectors to create gene mutations with high efficiency compared with existing methods. Applying this method to characterize gene functions in S. sclerotiorum, we confirm the requirement for oxalic acid production as a virulence factor in multiple isolates of the fungus and demonstrate that melanin accumulation is not required for infection. Using this approach, the pace of functional gene characterization and the understanding of pathogenicity and related disease resistance will increase.

Journal ArticleDOI
TL;DR: This review aims to provide critical updates on plant sRNAs as key epigenetic regulators of plant salt- stress responses, their target prediction and validation, computational tools and databases available for plant small RNAs, besides discussing their roles in salt-stress regulatory networks and adaptive mechanisms in plants.
Abstract: Saline environment cues distort the plant growth, development and crop yield. Epigenetics has emerged as one of the prime themes in plant functional genomics for molecular-stress-physiology research, as copious studies have provided new visions into the epigenetic control of stress adaptations. The epigenetic control is associated with the regulation of the expression of stress-related genes which also comprises many steady alterations inherited in next cellular generation as stress memory. These epigenetic amendments also implicate induction of small RNA (sRNA)-mediated fine-tuning of transcriptional and post-transcriptional regulations of gene expression. These tiny (19–24 nt) RNA species, particularly microRNAs (miRNAs) besides endogenous small interfering RNA (siRNA) have emerged as important responsive entities for epigenetic modulation of salt-stress effects on plants. There is a recent upsurge in development of tools and databases useful for prediction, identification and validation of small RNAs (sRNAs) and their target messenger RNAs (mRNAs). Therefore, these small but key regulatory molecules have received a wide attention in post-genomic era as potential targets for engineering stress tolerance in major glycophytic crops, though it is yet to be explored optimally. This review aims to provide critical updates on plant sRNAs as key epigenetic regulators of plant salt-stress responses, their target prediction and validation, computational tools and databases available for plant small RNAs, besides discussing their roles in salt-stress regulatory networks and adaptive mechanisms in plants, with special emphasis on their exploration for engineering salinity tolerance in plants.

Journal ArticleDOI
TL;DR: A chromosome-scale assembly of the black raspberry genome is presented using single-molecule real-time Pacific Biosciences sequencing and high-throughput chromatin conformation capture (Hi-C) genome scaffolding for improved resolution of tandem gene arrays.
Abstract: Background The fragmented nature of most draft plant genomes has hindered downstream gene discovery, trait mapping for breeding, and other functional genomics applications. There is a pressing need to improve or finish draft plant genome assemblies. Findings Here, we present a chromosome-scale assembly of the black raspberry genome using single-molecule real-time Pacific Biosciences sequencing and high-throughput chromatin conformation capture (Hi-C) genome scaffolding. The updated V3 assembly has a contig N50 of 5.1 Mb, representing an ∼200-fold improvement over the previous Illumina-based version. Each of the 235 contigs was anchored and oriented into seven chromosomes, correcting several major misassemblies. Black raspberry V3 contains 47 Mb of new sequences including large pericentromeric regions and thousands of previously unannotated protein-coding genes. Among the new genes are hundreds of expanded tandem gene arrays that were collapsed in the Illumina-based assembly. Detailed comparative genomics with the high-quality V4 woodland strawberry genome (Fragaria vesca) revealed near-perfect 1:1 synteny with dramatic divergence in tandem gene array composition. Lineage-specific tandem gene arrays in black raspberry are related to agronomic traits such as disease resistance and secondary metabolite biosynthesis. Conclusions The improved resolution of tandem gene arrays highlights the need to reassemble these highly complex and biologically important regions in draft plant genomes. The updated, high-quality black raspberry reference genome will be useful for comparative genomics across the horticulturally important Rosaceae family and enable the development of marker assisted breeding in Rubus.

Journal ArticleDOI
TL;DR: It is found that some putatively essential genes are dispensable, whereas others have large dispensable regions, and this approach can be used to profile the effects of large classes of variants in a high-throughput manner.
Abstract: Understanding the functional effects of DNA sequence variants is of critical importance for studies of basic biology, evolution, and medical genetics; however, measuring these effects in a high-throughput manner is a major challenge. One promising avenue is precise editing with the CRISPR-Cas9 system, which allows for generation of DNA double-strand breaks (DSBs) at genomic sites matching the targeting sequence of a guide RNA (gRNA). Recent studies have used CRISPR libraries to generate many frameshift mutations genome wide through faulty repair of CRISPR-directed breaks by nonhomologous end joining (NHEJ) 1 . Here, we developed a CRISPR-library-based approach for highly efficient and precise genome-wide variant engineering. We used our method to examine the functional consequences of premature-termination codons (PTCs) at different locations within all annotated essential genes in yeast. We found that most PTCs were highly deleterious unless they occurred close to the 3' end of the gene and did not affect an annotated protein domain. Unexpectedly, we discovered that some putatively essential genes are dispensable, whereas others have large dispensable regions. This approach can be used to profile the effects of large classes of variants in a high-throughput manner.

Journal ArticleDOI
TL;DR: A foxtail mosaic virus vector allows the rapid expression of heterologous proteins of up to 600 amino acids in length in wheat and maize and can be used for in planta expression and functional analysis of apoplastic pathogen effector proteins such as the host-specific toxin ToxA of Parastagonospora nodorum.
Abstract: Rapid and cost-effective virus-derived transient expression systems for plants are invaluable in elucidating gene function and are particularly useful in plant species for which transformation-based methods are unavailable or are too time and labor demanding, such as wheat (Triticum aestivum) and maize (Zea mays). The virus-mediated overexpression (VOX) vectors based on Barley stripe mosaic virus and Wheat streak mosaic virus described previously for these species are incapable of expressing free recombinant proteins of more than 150 to 250 amino acids, are not suited for high-throughput screens, and have other limitations. In this study, we report the development of a VOX vector based on a monopartite single-stranded positive sense RNA virus, Foxtail mosaic virus (genus Potexvirus). In this vector, PV101, the gene of interest was inserted downstream of the duplicated subgenomic promoter of the viral coat protein gene, and the corresponding protein was expressed in its free form. The vector allowed the expression of a 239-amino acid-long GFP in both virus-inoculated and upper uninoculated (systemic) leaves of wheat and maize and directed the systemic expression of a larger approximately 600-amino acid protein, GUSPlus, in maize. Moreover, we demonstrated that PV101 can be used for in planta expression and functional analysis of apoplastic pathogen effector proteins such as the host-specific toxin ToxA of Parastagonospora nodorum. Therefore, this VOX vector opens possibilities for functional genomics studies in two important cereal crops.

Journal ArticleDOI
TL;DR: This Review discusses strategies for broad-based mouse phenomics, applied both to gene knockout collections and to diverse strains harbouring natural genetic variation, and discusses technical challenges, analysis pipelines and insights into human disease genetics.
Abstract: We are entering a new era of mouse phenomics, driven by large-scale and economical generation of mouse mutants coupled with increasingly sophisticated and comprehensive phenotyping. These studies are generating large, multidimensional gene–phenotype data sets, which are shedding new light on the mammalian genome landscape and revealing many hitherto unknown features of mammalian gene function. Moreover, these phenome resources provide a wealth of disease models and can be integrated with human genomics data as a powerful approach for the interpretation of human genetic variation and its relationship to disease. In the future, the development of novel phenotyping platforms allied to improved computational approaches, including machine learning, for the analysis of phenotype data will continue to enhance our ability to develop a comprehensive and powerful model of mammalian gene–phenotype space. Although the field of functional genomics is increasingly adopting genome-scale approaches, a comprehensive understanding of gene functions requires the parallel development of deep phenotyping platforms. This Review discusses strategies for broad-based mouse phenomics, applied both to gene knockout collections and to diverse strains harbouring natural genetic variation. The authors discuss technical challenges, analysis pipelines and insights into human disease genetics.

Journal ArticleDOI
TL;DR: Advances and challenges in integrating ChIP-seq data to identify context-specific chromatin states associated with gene activity are discussed and the overall computational design of integrating ChIPS data with other functional genomics assays is described.
Abstract: Transcription is regulated by transcription factor (TF) binding at promoters and distal regulatory elements and histone modifications that control the accessibility of these elements. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) has become the standard assay for identifying genome-wide protein-DNA interactions in vitro and in vivo. As large-scale ChIP-seq data sets have been collected for different TFs and histone modifications, their potential to predict gene expression can be used to test hypotheses about the mechanisms of gene regulation. In addition, complementary functional genomics assays provide a global view of chromatin accessibility and long-range cis-regulatory interactions that are being combined with TF binding and histone remodeling to study the regulation of gene expression. Thus, ChIP-seq analysis is now widely integrated with other functional genomics assays to better understand gene regulatory mechanisms. In this review, we discuss advances and challenges in integrating ChIP-seq data to identify context-specific chromatin states associated with gene activity. We describe the overall computational design of integrating ChIP-seq data with other functional genomics assays. We also discuss the challenges of extending these methods to low-input ChIP-seq assays and related single-cell assays.

Journal ArticleDOI
TL;DR: A unifying model is presented that clarifies the function of cyclin G1 in establishing proliferative competence, overriding p53 checkpoints and advancing cell cycle progression and provides a mechanistic basis for understanding the broad-spectrum anticancer activity and single-agent efficacy observed with dominant-negative cyclinG1, whose cytocidal mechanism of action triggers programmed cell death.
Abstract: Basic research in genetics, biochemistry and cell biology has identified the executive enzymes and protein kinase activities that regulate the cell division cycle of all eukaryotic organisms, thereby elucidating the importance of site-specific protein phosphorylation events that govern cell cycle progression. Research in cancer genomics and virology has provided meaningful links to mammalian checkpoint control elements with the characterization of growth-promoting proto-oncogenes encoding c-Myc, Mdm2, cyclins A, D1 and G1, and opposing tumor suppressor proteins, such as p53, pRb, p16INK4A and p21WAF1, which are commonly dysregulated in cancer. While progress has been made in identifying numerous enzymes and molecular interactions associated with cell cycle checkpoint control, the marked complexity, particularly the functional redundancy, of these cell cycle control enzymes in mammalian systems, presents a major challenge in discerning an optimal locus for therapeutic intervention in the clinical management of cancer. Recent advances in genetic engineering, functional genomics and clinical oncology converged in identifying cyclin G1 (CCNG1 gene) as a pivotal component of a commanding cyclin G1/Mdm2/p53 axis and a strategic locus for re-establishing cell cycle control by means of therapeutic gene transfer. The purpose of the present study is to provide a focused review of cycle checkpoint control as a practicum for clinical oncologists with an interest in applied molecular medicine. The aim is to present a unifying model that: i) clarifies the function of cyclin G1 in establishing proliferative competence, overriding p53 checkpoints and advancing cell cycle progression; ii) is supported by studies of inhibitory microRNAs linking CCNG1 expression to the mechanisms of carcinogenesis and viral subversion; and iii) provides a mechanistic basis for understanding the broad-spectrum anticancer activity and single-agent efficacy observed with dominant-negative cyclin G1, whose cytocidal mechanism of action triggers programmed cell death. Clinically, the utility of companion diagnostics for cyclin G1 pathways is anticipated in the staging, prognosis and treatment of cancers, including the potential for rational combinatorial therapies.

Journal ArticleDOI
TL;DR: An unbiased, integrated analysis of transcriptomic data from comparisons of insecticide resistant and susceptible Anopheles populations from disparate geographical regions across the African continent confirms previously described resistance candidates but also identifies multiple novel genes involving alternative resistance mechanisms.
Abstract: Increasing insecticide resistance in malaria-transmitting vectors represents a public health threat, but underlying mechanisms are poorly understood. Here, a data integration approach is used to analyse transcriptomic data from comparisons of insecticide resistant and susceptible Anopheles populations from disparate geographical regions across the African continent. An unbiased, integrated analysis of this data confirms previously described resistance candidates but also identifies multiple novel genes involving alternative resistance mechanisms, including sequestration, and transcription factors regulating multiple downstream effector genes, which are validated by gene silencing. The integrated datasets can be interrogated with a bespoke Shiny R script, deployed as an interactive web-based application, that maps the expression of resistance candidates and identifies co-regulated transcripts that may give clues to the function of novel resistance-associated genes. Increasing insecticide resistance of mosquitoes represents a public health threat, and underlying mechanisms are poorly understood. Here, Ingham et al. identify putative insecticide resistance genes in Anopheles gambiae populations across Africa and develop a web-based application that maps their expression.


Journal ArticleDOI
TL;DR: It is argued that, similar to human GWASs, it is important to use functional genomics techniques to gain a mechanistic understanding of causal host-microbiome interactions and their role in human disease.

Journal ArticleDOI
TL;DR: The NetWAS approach available through the server uses tissue-specific/cell-type networks predicted by GIANT2 to re-prioritize statistical associations from GWAS studies and identify disease-associated genes.
Abstract: GIANT2 (Genome-wide Integrated Analysis of gene Networks in Tissues) is an interactive web server that enables biomedical researchers to analyze their proteins and pathways of interest and generate hypotheses in the context of genome-scale functional maps of human tissues. The precise actions of genes are frequently dependent on their tissue context, yet direct assay of tissue-specific protein function and interactions remains infeasible in many normal human tissues and cell-types. With GIANT2, researchers can explore predicted tissue-specific functional roles of genes and reveal changes in those roles across tissues, all through interactive multi-network visualizations and analyses. Additionally, the NetWAS approach available through the server uses tissue-specific/cell-type networks predicted by GIANT2 to re-prioritize statistical associations from GWAS studies and identify disease-associated genes. GIANT2 predicts tissue-specific interactions by integrating diverse functional genomics data from now over 61 400 experiments for 283 diverse tissues and cell-types. GIANT2 does not require any registration or installation and is freely available for use at http://giant-v2.princeton.edu.

Journal ArticleDOI
TL;DR: Results show that genome-wide decay of the phenotype-specific cis-regulatory landscape is a hallmark of lost morphological traits in snakes and subterranean mammals respectively.
Abstract: Detecting the genomic changes underlying phenotypic changes between species is a main goal of evolutionary biology and genomics. Evolutionary theory predicts that changes in cis-regulatory elements are important for morphological changes. We combined genome sequencing, functional genomics and genome-wide comparative analyses to investigate regulatory elements in lineages that lost morphological traits. We first show that limb loss in snakes is associated with widespread divergence of limb regulatory elements. We next show that eye degeneration in subterranean mammals is associated with widespread divergence of eye regulatory elements. In both cases, sequence divergence results in an extensive loss of transcription factor binding sites. Importantly, diverged regulatory elements are associated with genes required for normal limb patterning or normal eye development and function, suggesting that regulatory divergence contributed to the loss of these phenotypes. Together, our results show that genome-wide decay of the phenotype-specific cis-regulatory landscape is a hallmark of lost morphological traits.