scispace - formally typeset
Search or ask a question
Institution

Tohoku University

EducationSendai, Japan
About: Tohoku University is a education organization based out in Sendai, Japan. It is known for research contribution in the topics: Magnetization & Alloy. The organization has 72116 authors who have published 170791 publications receiving 3941714 citations. The organization is also known as: Tōhoku daigaku.


Papers
More filters
Journal ArticleDOI
TL;DR: Kazuaki SHIMAMOTO, Katsuyuki ANDO, Toshiro FUJITA, Naoyuki HASEBE, Jitsuo HIGAKI, Masatsugu HORIUCHI, Yutaka IMAI, Tsutomu IMAIZUMI, Toshihiko ISHIMITSU, Masaaki ITO, Sadayoshi ITO and Hiroshi ITOH are presented.
Abstract: Kazuaki SHIMAMOTO, Katsuyuki ANDO, Toshiro FUJITA, Naoyuki HASEBE, Jitsuo HIGAKI, Masatsugu HORIUCHI, Yutaka IMAI, Tsutomu IMAIZUMI, Toshihiko ISHIMITSU, Masaaki ITO, Sadayoshi ITO, Hiroshi ITOH, Hiroshi IWAO, Hisashi KAI, Kazuomi KARIO, Naoki KASHIHARA, Yuhei KAWANO, Shokei KIM-MITSUYAMA, Genjiro KIMURA, Katsuhiko KOHARA, Issei KOMURO, Hiroo KUMAGAI, Hideo MATSUURA, Katsuyuki MIURA, Ryuichi MORISHITA, Mitsuhide NARUSE, Koichi NODE, Yusuke OHYA, Hiromi RAKUGI, Ikuo SAITO, Shigeyuki SAITOH, Kazuyuki SHIMADA, Tatsuo SHIMOSAWA, Hiromichi SUZUKI, Kouichi TAMURA, Norio TANAHASHI, Takuya TSUCHIHASHI, Makoto UCHIYAMA, Shinichiro UEDA, Satoshi UMEMURA, on behalf of The Japanese Society of Hypertension Committee for Guidelines for the Management of Hypertension

1,061 citations

Journal ArticleDOI
TL;DR: It is shown that penta-graphene, composed of only carbon pentagons and resembling Cairo pentagonal tiling, is dynamically, thermally, and mechanically stable, and exhibits negative Poisson's ratio, a large band gap, and an ultrahigh mechanical strength.
Abstract: A 2D metastable carbon allotrope, penta-graphene, composed entirely of carbon pentagons and resembling the Cairo pentagonal tiling, is proposed. State-of-the-art theoretical calculations confirm that the new carbon polymorph is not only dynamically and mechanically stable, but also can withstand temperatures as high as 1000 K. Due to its unique atomic configuration, penta-graphene has an unusual negative Poisson’s ratio and ultrahigh ideal strength that can even outperform graphene. Furthermore, unlike graphene that needs to be functionalized for opening a band gap, penta-graphene possesses an intrinsic quasi-direct band gap as large as 3.25 eV, close to that of ZnO and GaN. Equally important, penta-graphene can be exfoliated from T12-carbon. When rolled up, it can form pentagon-based nanotubes which are semiconducting, regardless of their chirality. When stacked in different patterns, stable 3D twin structures of T12-carbon are generated with band gaps even larger than that of T12-carbon. The versatility of penta-graphene and its derivatives are expected to have broad applications in nanoelectronics and nanomechanics.

1,060 citations

Journal ArticleDOI
TL;DR: It is shown that a seven-transmembrane receptor, CRTH2, which is preferentially expressed in T helper type 2 (Th2) cells, eosinophils, and basophils in humans, serves as the novel receptor for PGD2.
Abstract: Prostaglandin (PG)D2, which has long been implicated in allergic diseases, is currently considered to elicit its biological actions through the DP receptor (DP). Involvement of DP in the formation of allergic asthma was recently demonstrated with DP-deficient mice. However, proinflammatory functions of PGD2 cannot be explained by DP alone. We show here that a seven-transmembrane receptor, CRTH2, which is preferentially expressed in T helper type 2 (Th2) cells, eosinophils, and basophils in humans, serves as the novel receptor for PGD2. In response to PGD2, CRTH2 induces intracellular Ca2+ mobilization and chemotaxis in Th2 cells in a Gαi-dependent manner. In addition, CRTH2, but not DP, mediates PGD2-dependent cell migration of blood eosinophils and basophils. Thus, PGD2 is likely involved in multiple aspects of allergic inflammation through its dual receptor systems, DP and CRTH2.

1,055 citations

Journal ArticleDOI
TL;DR: An improved search for neutrinoless double-beta (0νββ) decay of ^{136}Xe in the KamLAND-Zen experiment is presented and a significant reduction of the xenon-loaded liquid scintillator contaminant identified in previous searches is achieved.
Abstract: We present an improved search for neutrinoless double-beta (0νββ) decay of ^{136}Xe in the KamLAND-Zen experiment. Owing to purification of the xenon-loaded liquid scintillator, we achieved a significant reduction of the ^{110m}Ag contaminant identified in previous searches. Combining the results from the first and second phase, we obtain a lower limit for the 0νββ decay half-life of T_{1/2}^{0ν}>1.07×10^{26} yr at 90% C.L., an almost sixfold improvement over previous limits. Using commonly adopted nuclear matrix element calculations, the corresponding upper limits on the effective Majorana neutrino mass are in the range 61-165 meV. For the most optimistic nuclear matrix elements, this limit reaches the bottom of the quasidegenerate neutrino mass region.

1,055 citations


Authors

Showing all 72477 results

NameH-indexPapersCitations
John Q. Trojanowski2261467213948
Aaron R. Folsom1811118134044
Marc G. Caron17367499802
Masayuki Yamamoto1711576123028
Kenji Watanabe1672359129337
Rodney S. Ruoff164666194902
Frederik Barkhof1541449104982
Takashi Taniguchi1522141110658
Yoshio Bando147123480883
Thomas P. Russell141101280055
Ali Khademhosseini14088776430
Marco Colonna13951271166
David H. Barlow13378672730
Lin Gu13086856157
Yoichiro Iwakura12970564041
Network Information
Related Institutions (5)
Osaka University
185.6K papers, 5.1M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Hokkaido University
115.4K papers, 2.6M citations

96% related

Kyoto University
217.2K papers, 6.5M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023162
2022754
20216,412
20206,426
20196,076
20185,898