scispace - formally typeset
Search or ask a question
Institution

Tohoku University

EducationSendai, Japan
About: Tohoku University is a education organization based out in Sendai, Japan. It is known for research contribution in the topics: Magnetization & Alloy. The organization has 72116 authors who have published 170791 publications receiving 3941714 citations. The organization is also known as: Tōhoku daigaku.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review the results of a wide variety of experiments on materials such as weakly coupled antiferromagnetic insulators with very large Heisenberg exchange energies, which become high-temperature superconductors when charge carriers are added to the layers.
Abstract: The authors review the results of a wide variety of experiments on materials such as ${\mathrm{La}}_{2}{\mathrm{CuO}}_{4}$ and ${\mathrm{Nd}}_{2}{\mathrm{CuO}}_{4}$ that contain weakly coupled ${\mathrm{CuO}}_{2}$ layers. These materials are antiferromagnetic insulators with very large Heisenberg exchange energies, which become high-temperature superconductors when charge carriers are added to the ${\mathrm{CuO}}_{2}$ layers. The growth of large single crystals has made it possible to carry out neutron scattering, as well as anisotropic optical, transport, and magnetization measurements. The properties of the undoped ${\mathrm{CuO}}_{2}$ layer are reviewed, and the evolution of magnetic, optical, and transport properties with the addition of charge carriers is discussed. The emphasis is on the pure and lightly doped materials, although the magnetism in the superconductors is discussed.

689 citations

Journal ArticleDOI
TL;DR: A functional MOS transistor is proposed which works more intelligently than a mere switching device, and is ideal for ULSI implementation.
Abstract: A functional MOS transistor is proposed which works more intelligently than a mere switching device. The functional transistor calculates the weighted sum of all input signals at the gate level, and controls the 'on' and 'off' of the transistor based on the result of such a weighted sum operation. Since the function is quite analogous to that of biological neurons, the device is named a neuron MOSFET, or neuMOS (vMOS). The device is composed of a floating gate and multiples of input gates that capacitively interact with the floating gate. As the gate-level sum operation is performed in a voltage mode utilizing the capacitive coupling effect, essentially no power dissipation occurs in the calculation, making the device ideal for ULSI implementation. The basic characteristics of neuron MOSFETs as well as of simple circuit blocks are analyzed based on a simple transistor model and experiments. Making use of its very powerful function, a number of interesting circuit applications are explored. A soft hardware logic circuit implemented by neuMOS transistors is also proposed. >

689 citations

Journal ArticleDOI
TL;DR: This work believes this conceptual approach can form the basis for the next generation of NEN classifications and will allow more consistent taxonomy to understand how neoplasms from different organ systems inter-relate clinically and genetically.

688 citations

Journal ArticleDOI
TL;DR: It is proposed that reactive Cys persulfides and S-polythiolation have critical regulatory functions in redox cell signaling and H2S may act primarily as a marker for the biologically active of persulfide species.
Abstract: Using methodology developed herein, it is found that reactive persulfides and polysulfides are formed endogenously from both small molecule species and proteins in high amounts in mammalian cells and tissues. These reactive sulfur species were biosynthesized by two major sulfurtransferases: cystathionine β-synthase and cystathionine γ-lyase. Quantitation of these species indicates that high concentrations of glutathione persulfide (perhydropersulfide >100 μM) and other cysteine persulfide and polysulfide derivatives in peptides/proteins were endogenously produced and maintained in the plasma, cells, and tissues of mammals (rodent and human). It is expected that persulfides are especially nucleophilic and reducing. This view was found to be the case, because they quickly react with H2O2 and a recently described biologically generated electrophile 8-nitroguanosine 3′,5′-cyclic monophosphate. These results indicate that persulfides are potentially important signaling/effector species, and because H2S can be generated from persulfide degradation, much of the reported biological activity associated with H2S may actually be that of persulfides. That is, H2S may act primarily as a marker for the biologically active of persulfide species.

688 citations

Journal ArticleDOI
TL;DR: Cross talk between Nrf2 and other signaling pathways is identified, which provides new insights into the mechanisms by which the Keap1-Nrf2 system serves as a potent regulator of the authors' health and disease.

688 citations


Authors

Showing all 72477 results

NameH-indexPapersCitations
John Q. Trojanowski2261467213948
Aaron R. Folsom1811118134044
Marc G. Caron17367499802
Masayuki Yamamoto1711576123028
Kenji Watanabe1672359129337
Rodney S. Ruoff164666194902
Frederik Barkhof1541449104982
Takashi Taniguchi1522141110658
Yoshio Bando147123480883
Thomas P. Russell141101280055
Ali Khademhosseini14088776430
Marco Colonna13951271166
David H. Barlow13378672730
Lin Gu13086856157
Yoichiro Iwakura12970564041
Network Information
Related Institutions (5)
Osaka University
185.6K papers, 5.1M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Hokkaido University
115.4K papers, 2.6M citations

96% related

Kyoto University
217.2K papers, 6.5M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023162
2022754
20216,412
20206,426
20196,076
20185,898