scispace - formally typeset
Search or ask a question
Institution

Tokyo Institute of Technology

EducationTokyo, Tôkyô, Japan
About: Tokyo Institute of Technology is a education organization based out in Tokyo, Tôkyô, Japan. It is known for research contribution in the topics: Catalysis & Thin film. The organization has 46775 authors who have published 101656 publications receiving 2357893 citations. The organization is also known as: Tokyo Tech & Tokodai.


Papers
More filters
Journal ArticleDOI
TL;DR: This review investigates nanoscale effects on the physical properties of graphene nanoribbons and clarify the role of edge boundaries, and provides analytical solutions for electronic dispersion and the corresponding wavefunction in graphene nan oribbons with their detailed derivation using wave mechanics based on the tight-binding model.

368 citations

Journal ArticleDOI
TL;DR: A novel method for preparation of biomacromolecular imprinted nanoparticles that interact specifically with the target peptide and show little affinity for other proteins and are of interest as inert and stable substitutes for antibodies.
Abstract: A novel method for preparation of biomacromolecular imprinted nanoparticles is described. Combinations of functional monomers were polymerized in the presence of the imprinting peptide melittin in aqueous solution at room temperature to produce a small library of polymer nanoparticles. The template peptide and unreacted monomers are subsequently removed by dialysis. Nanoparticles (NPs) from the library were evaluated for their binding to melittin by 27 MHz QCM analysis. NPs prepared with optimized functional monomer combinations bind strongly to the target molecule. Nanoparticles that were polymerized in the absence of template peptide were found to have little affinity to the peptide. Binding affinity and the size of imprinted particles are comparable to those of natural antibodies. They interact specifically with the target peptide and show little affinity for other proteins. These NPs are of interest as inert and stable substitutes for antibodies. Extension of this approach to other targets of biological importance and the applications of these materials are currently being evaluated.

367 citations

Journal ArticleDOI
TL;DR: In this paper, the edge states at the zigzag edges have different spatial distributions dependent on the locations of the carbon atoms of the edge carbon atoms, and the edge state is present also near the defects.
Abstract: The edge states that emerge at hydrogen-terminated zigzag edges embedded in dominant armchair edges of graphite are carefully investigated by ultrahigh-vacuum scanning tunneling microscopy (STM) measurements. The edge states at the zigzag edges have different spatial distributions dependent on the $\ensuremath{\alpha}$- or $\ensuremath{\beta}$-site edge carbon atoms. In the case that the defects consist of a short zigzag (or a short Klein) edge, the edge state is present also near the defects. The amplitude of the edge state distributing around the defects in an armchair edge often has a prominent hump in a direction determined by detailed local atomic structure of the edge. The tight binding calculation based on the atomic arrangements observed by STM reproduces the observed spatial distributions of the local density of states.

367 citations

Journal ArticleDOI
01 Aug 1992
TL;DR: To reduce the complex walking dynamics of a biped, a particular class of trajectories of an ideal biped model where thecenter of gravity of the body moves horizontally and the horizontal motion of the center of gravity can be expressed by a simple linear differential equation is introduced.
Abstract: To reduce the complex walking dynamics of a biped, a particular class of trajectories of an ideal biped model where the center of gravity of the body moves horizontally and the horizontal motion of the center of gravity can be expressed by a simple linear differential equation is introduced. The authors coin the phrase 'potential energy conserving orbit' to describe this class of trajectories. Based on these properties, control laws were formulated for walk initiation, walk continuation, and walk termination. The walking motion is controlled by support leg exchange. Robust realization of the walking control is also considered. An experimental walking machine was designed as a nearly ideal biped model. To make the legs lighter, four DC motors were mounted in the body, and the legs are parallel link structures. The results of the experiment describe five steps of dynamic walking including walk initiation. >

366 citations

Journal ArticleDOI
TL;DR: A molecular basis for DRB action is revealed and suggests that P‐TEFb stimulates elongation by alleviating the negative action of DSIF, which binds to RNA Pol II and may directly regulate elongation.
Abstract: Recently, a positive and a negative elongation factor, implicated in 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) inhibition of transcription elongation, has been identified. P-TEFb is a positive transcription elongation factor and the DRB-sensitive kinase that phosphorylates the C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II). PITALRE, a member of the Cdc2 family of protein kinases, is the catalytic subunit of P-TEFb. DSIF is a human homolog of the yeast Spt4-Spt5 complex and renders elongation of transcription sensitive to DRB. DRB sensitivity-inducing factor (DSIF) binds to RNA Pol II and may directly regulate elongation. Here we show a functional interaction between P-TEFb and DSIF. The reduction of P-TEFb activity induced by either DRB, antibody against PITALRE, or immunodepletion resulted in a negative effect of DSIF on transcription. DSIF acts at an early phase of elongation, and the prior action of P-TEFb makes transcription resistant to DSIF. The state of phosphorylation of CTD determines the DSIF-RNA Pol II interaction, and may provide a direct link between P-TEFb and DSIF. Taken together, this study reveals a molecular basis for DRB action and suggests that P-TEFb stimulates elongation by alleviating the negative action of DSIF.

365 citations


Authors

Showing all 46967 results

NameH-indexPapersCitations
Matthew Meyerson194553243726
Yury Gogotsi171956144520
Masayuki Yamamoto1711576123028
H. Eugene Stanley1541190122321
Takashi Taniguchi1522141110658
Shu-Hong Yu14479970853
Kazunori Kataoka13890870412
Osamu Jinnouchi13588586104
Hector F. DeLuca133130369395
Shlomo Havlin131101383347
Hiroyuki Iwasaki131100982739
Kazunari Domen13090877964
Hideo Hosono1281549100279
Hideyuki Okano128116967148
Andreas Strasser12850966903
Network Information
Related Institutions (5)
University of Tokyo
337.5K papers, 10.1M citations

95% related

Osaka University
185.6K papers, 5.1M citations

95% related

Kyoto University
217.2K papers, 6.5M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202388
2022358
20213,457
20203,695
20193,783
20183,531