scispace - formally typeset
Open AccessJournal ArticleDOI

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott, +1134 more
- 16 Oct 2017 - 
- Vol. 119, Iss: 16, pp 161101-161101
TLDR
The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract
On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4}  years. We infer the component masses of the binary to be between 0.86 and 2.26  M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60  M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28  deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8}  Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects

TL;DR: In this paper, the effects of two independent spins in the precession dynamics of binary black holes were modeled using a single-spin frequency-dependent post-Newtonian rotation to describe precession effects and a double-spin rotation that is based on recent developments in the description of precessional dynamics.
Journal ArticleDOI

From hadrons to quarks in neutron stars: a review

TL;DR: The structure of neutron stars constructed from the unified equations of states with crossover is described, and the parameters of effective quark models are constrained by neutron star mass and radii measurements, in particular favoring large repulsive density-density and attractive diquark pairing interactions.
Journal ArticleDOI

Energetics of two-body Hamiltonians in post-Minkowskian gravity

TL;DR: In this article, the binding energy of a two-body system on a quasicircular inspiraling orbit was compared with results of numerical relativity (NR) simulations, and it was shown that it is crucial to push PM calculations at higher orders if one wants to achieve better performances than current waveform models used for LIGO/Virgo data analysis.
Journal ArticleDOI

Dark Energy Survey year 1 results: Constraints on extended cosmological models from galaxy clustering and weak lensing

T. M. C. Abbott, +113 more
- 07 Jun 2019 - 
TL;DR: In this paper, the authors present constraints on extensions of the minimal cosmological models dominated by dark matter and dark energy, ΛCDM and wCDM, by using a combined analysis of galaxy clustering and weak gravitational lensing from the first-year data of the Dark Energy Survey (DES Y1) in combination with external data.
References
More filters
Journal ArticleDOI

Planck 2015 results - XIII. Cosmological parameters

Peter A. R. Ade, +337 more
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Journal ArticleDOI

Planck 2015 results. XIII. Cosmological parameters

Peter A. R. Ade, +260 more
TL;DR: In this paper, the authors present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB, which are consistent with the six-parameter inflationary LCDM cosmology.
Journal ArticleDOI

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Journal Article

The Observation of Gravitational Waves from a Binary Black Hole Merger

TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Journal ArticleDOI

GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence

B. P. Abbott, +973 more
TL;DR: This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Related Papers (5)

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more

Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

B. P. Abbott, +1198 more

GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence

B. P. Abbott, +973 more

GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence

B. P. Abbott, +1116 more