scispace - formally typeset
Journal ArticleDOI

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review.

Xin-Bing Cheng, +3 more
- 28 Jul 2017 - 
- Vol. 117, Iss: 15, pp 10403-10473
Reads0
Chats0
TLDR
This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth, summarizing the theoretical and experimental achievements and endeavors to realize the practical applications of lithium metal batteries.
Abstract
The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applicatio...

read more

Citations
More filters
Journal ArticleDOI

Performance and cost of materials for lithium-based rechargeable automotive batteries

TL;DR: In this article, the state-of-the-art advances in active materials, electrolytes and cell chemistries for automotive batteries are surveyed, along with an assessment of the potential to fulfil the ambitious targets of electric vehicle propulsion.
Journal ArticleDOI

Advancing Lithium Metal Batteries

TL;DR: Li metal anodes are well known to be one of the most promising anodes due to their ultra-high capacity (3,860 mAh g −1 ) and the very low standard negative electrochemical potential (−3.040 V) as discussed by the authors.
Journal ArticleDOI

Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry

TL;DR: The current advances, existing limitations, along with the possible solutions in the pursuit of cathode materials with high voltage, fast kinetics, and long cycling stability are comprehensively covered and evaluated to guide the future design of aqueous ZIBs with a combination of high gravimetric energy density, good reversibility, and a long cycle life.
References
More filters
Journal ArticleDOI

Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy

TL;DR: A comprehensive understanding of the voltage variations observed during Li metal cycling is presented, which is directly correlated to morphology evolution through the use of operando video microscopy, and an improved understanding of changes in cell voltage is presented.
Journal ArticleDOI

Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries

TL;DR: In this article, an ion selective membrane is proposed to improve the stability and coulombic efficiency of lithium-sulfur batteries, where the sulfonate-ended perfluoroalkyl ether groups on the ionic separators are connected by pores or channels that are around several nanometers in size.
Journal ArticleDOI

Dendrite-Free, High-Rate, Long-Life Lithium Metal Batteries with a 3D Cross-Linked Network Polymer Electrolyte.

TL;DR: A 3D network gel polymer electrolyte (3D-GPE) designed for lithium metal batteries and prepared by an initiator-free one-pot ring-opening polymerization technique exhibits an unprecedented combination of mechanical strength, ionic conductivity, and more importantly, effective suppression of Li dendrite growth.
Journal ArticleDOI

Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

TL;DR: New ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries are provided.
Related Papers (5)