scispace - formally typeset
Search or ask a question
Institution

Kyoto University

EducationKyoto, Japan
About: Kyoto University is a education organization based out in Kyoto, Japan. It is known for research contribution in the topics: Catalysis & Population. The organization has 85837 authors who have published 217215 publications receiving 6526826 citations. The organization is also known as: Kyōto University & Kyōto daigaku.
Topics: Catalysis, Population, Gene, Transplantation, Ion


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, numerical simulations for the merger of binary neutron stars are performed for a variety of equations of state (EOSs) and for a plausible range of the neutron star mass, focusing primarily on the properties of the material ejected from the system.
Abstract: Numerical-relativity simulations for the merger of binary neutron stars are performed for a variety of equations of state (EOSs) and for a plausible range of the neutron-star mass, focusing primarily on the properties of the material ejected from the system. We find that a fraction of the material is ejected as a mildly relativistic and mildly anisotropic outflow with the typical and maximum velocities $\ensuremath{\sim}0.15--0.25c$ and $\ensuremath{\sim}0.5--0.8c$ (where $c$ is the speed of light), respectively, and that the total ejected rest mass is in a wide range ${10}^{\ensuremath{-}4}--{10}^{\ensuremath{-}2}{M}_{\ensuremath{\bigodot}}$, which depends strongly on the EOS, the total mass, and the mass ratio. The total kinetic energy ejected is also in a wide range between ${10}^{49}$ and ${10}^{51}\text{ }\text{ }\mathrm{ergs}$. The numerical results suggest that for a binary of canonical total mass $2.7{M}_{\ensuremath{\bigodot}}$, the outflow could generate an electromagnetic signal observable by the planned telescopes through the production of heavy-element unstable nuclei via the $r$-process [6,20,21] or through the formation of blast waves during the interaction with the interstellar matter [7], if the EOS and mass of the binary are favorable ones.

541 citations

Journal ArticleDOI
Shinya Toyokuni1
TL;DR: In humans, genetic hemochromatosis and asbestosis are two major diseases associated with iron-induced carcinogenesis, and there is an increasing number of reports of an association between increased body iron stores and increased risk of cancer.

541 citations

Journal ArticleDOI
TL;DR: Mitochondria-specific thioredoxin (Trx-2) and Trx peroxidases (peroxiredoxins) are suggested to regulate cytochrome c release from mitochondria, which is a critical early step in the apoptotis-signaling pathway.
Abstract: Cellular redox is controlled by the thioredoxin (Trx) and glutathione (GSH) systems that scavenge harmful intracellular reactive oxygen species (ROS). Oxidative stress also evokes many intracellular events including apoptosis. There are two major pathways through which apoptosis is induced; one involves death receptors and is exemplified by Fas-mediated caspase-8 activation, and another is the stress- or mitochondria-mediated caspase-9 activation pathway. Both pathways converge on caspase-3 activation, resulting in nuclear degradation and cellular morphological change. Oxidative stress induces cytochrome c release from mitochondria and activation of caspases, p53, and kinases, including apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. Trx inhibits apoptosis signaling not only by scavenging intracellular ROS in cooperation with the GSH system, but also by inhibiting the activity of ASK1 and p38. Mitochondria-specific thioredoxin (Trx-2) and Trx peroxidases (peroxiredoxins) are suggested to regulate cytochrome c release from mitochondria, which is a critical early step in the apoptotis-signaling pathway. dATP/ATP and reducing factors including Trx determine the manifestation of cell death, apoptosis or necrosis, by regulating the activation process and the activity of redox-sensitive caspases. As mitochondria are the most redox-active organelle and indispensable for cells to initiate or inhibit the apoptosis process, the regulation of mitochondrial function is the central focus in the research field of apoptosis and redox.

541 citations

Journal ArticleDOI
TL;DR: It is found that FAD-iPSC-derived differentiated neurons have increased amyloid β42 secretion, recapitulating the molecular pathogenesis of mutant presenilins and indicating the potential for identification and validation of candidate drugs.
Abstract: Alzheimer's disease (AD) is the most common form of age-related dementia, characterized by progressive memory loss and cognitive disturbance. Mutations of presenilin 1 (PS1) and presenilin 2 (PS2) are causative factors for autosomal-dominant early-onset familial AD (FAD). Induced pluripotent stem cell (iPSC) technology can be used to model human disorders and provide novel opportunities to study cellular mechanisms and establish therapeutic strategies against various diseases, including neurodegenerative diseases. Here we generate iPSCs from fibroblasts of FAD patients with mutations in PS1 (A246E) and PS2 (N141I), and characterize the differentiation of these cells into neurons. We find that FAD-iPSC-derived differentiated neurons have increased amyloid β42 secretion, recapitulating the molecular pathogenesis of mutant presenilins. Furthermore, secretion of amyloid β42 from these neurons sharply responds to γ-secretase inhibitors and modulators, indicating the potential for identification and validation of candidate drugs. Our findings demonstrate that the FAD-iPSC-derived neuron is a valid model of AD and provides an innovative strategy for the study of age-related neurodegenerative diseases.

540 citations

Journal ArticleDOI
04 Jun 2009-Nature
TL;DR: It is shown, using a genome-wide analysis of genetic lesions in 238 B-cell lymphomas, that A20 is a common genetic target in B-lineage lymphomas and uncontrolled signalling of NF-κB caused by loss of A20 function is involved in the pathogenesis of subsets of B- lineages lymphomas.
Abstract: A20 is a negative regulator of the NF-kappaB pathway and was initially identified as being rapidly induced after tumour-necrosis factor-alpha stimulation. It has a pivotal role in regulation of the immune response and prevents excessive activation of NF-kappaB in response to a variety of external stimuli; recent genetic studies have disclosed putative associations of polymorphic A20 (also called TNFAIP3) alleles with autoimmune disease risk. However, the involvement of A20 in the development of human cancers is unknown. Here we show, using a genome-wide analysis of genetic lesions in 238 B-cell lymphomas, that A20 is a common genetic target in B-lineage lymphomas. A20 is frequently inactivated by somatic mutations and/or deletions in mucosa-associated tissue lymphoma (18 out of 87; 21.8%) and Hodgkin's lymphoma of nodular sclerosis histology (5 out of 15; 33.3%), and, to a lesser extent, in other B-lineage lymphomas. When re-expressed in a lymphoma-derived cell line with no functional A20 alleles, wild-type A20, but not mutant A20, resulted in suppression of cell growth and induction of apoptosis, accompanied by downregulation of NF-kappaB activation. The A20-deficient cells stably generated tumours in immunodeficient mice, whereas the tumorigenicity was effectively suppressed by re-expression of A20. In A20-deficient cells, suppression of both cell growth and NF-kappaB activity due to re-expression of A20 depended, at least partly, on cell-surface-receptor signalling, including the tumour-necrosis factor receptor. Considering the physiological function of A20 in the negative modulation of NF-kappaB activation induced by multiple upstream stimuli, our findings indicate that uncontrolled signalling of NF-kappaB caused by loss of A20 function is involved in the pathogenesis of subsets of B-lineage lymphomas.

539 citations


Authors

Showing all 86225 results

NameH-indexPapersCitations
Kari Alitalo174817114231
Ralph M. Steinman171453121518
Masayuki Yamamoto1711576123028
Karl Deisseroth160556101487
Kenji Kangawa1531117110059
Takashi Taniguchi1522141110658
Ben Zhong Tang1492007116294
Takeo Kanade147799103237
Yuji Matsuzawa143836116711
Tasuku Honjo14171288428
Kenneth M. Yamada13944672136
Y. B. Hsiung138125894278
Shuh Narumiya13759570183
Kevin P. Campbell13752160854
Junji Tojo13587884615
Network Information
Related Institutions (5)
University of Tokyo
337.5K papers, 10.1M citations

99% related

Nagoya University
128.2K papers, 3.2M citations

99% related

Osaka University
185.6K papers, 5.1M citations

97% related

University of Tsukuba
79.4K papers, 1.9M citations

97% related

Hokkaido University
115.4K papers, 2.6M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022679
20218,533
20208,740
20198,050
20187,932