scispace - formally typeset
Search or ask a question
Institution

University of Kentucky

EducationLexington, Kentucky, United States
About: University of Kentucky is a education organization based out in Lexington, Kentucky, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 43933 authors who have published 92195 publications receiving 3256087 citations. The organization is also known as: UK.
Topics: Population, Poison control, Health care, Gene, Cancer


Papers
More filters
Journal ArticleDOI
TL;DR: This article explored the role of negative relationships in the context of social networks in work organizations and found that these negative relationships may have greater power than positive relationships to explain workplace outcomes, while positive relationships may not have the same power as negative relationships.
Abstract: We explore the role of negative relationships in the context of social networks in work organizations. Whereas network researchers have emphasized the benefits and opportunities derived from positive interpersonal relationships, we examine the social liabilities that can result from negative relationships in order to flesh out the entire “social ledger.” Deriving our argument from theory and research on negative asymmetry, we propose that these negative relationships may have greater power than positive relationships to explain workplace outcomes

604 citations

Journal ArticleDOI
TL;DR: Tests of predictions from conflict theory will require better information on how males and females encounter one another, behave once they have met, and influence fertilization once insemination has occurred.
Abstract: ▪ Abstract Extra-pair paternity (EPP) is extremely variable among species of birds, both in its frequency and in the behavioral events that produce it. A flood of field studies and comparative analyses has stimulated an array of novel ideas, but the results are limited in several ways. The prevailing view is that EPP is largely the product of a female strategy. We evaluate what is known about the behavioral events leading to EPP and find the justification for this view to be weak. Conflict theory (derived from selection theory) predicts that adaptations in all the players involved will influence the outcome of mating interactions, producing complex and often highly variable patterns of behavior and levels of EPP. Data support some of these predictions, but alternative hypotheses abound. Tests of predictions from conflict theory will require better information on how males and females encounter one another, behave once they have met, and influence fertilization once insemination has occurred.

604 citations

Journal ArticleDOI
TL;DR: Combinations of quantitative and visual analyses are providing researchers with new insights into the details of natural selection in the wild, through graphical representation of selection surfaces.
Abstract: Modern methods of analysis are enabling researchers to study natural selection at a new level of detail. Multivariate statistical techniques can Identify specific targets of selection and provide parameter estimates that fit into equations for evolutionary change. A more Intuitive understanding of the form of selection can be provided through graphical representation of selection surfaces. Combinations of quantitative and visual analyses are providing researchers with new insights into the details of natural selection in the wild.

602 citations

Journal ArticleDOI
Chris T. Amemiya1, Chris T. Amemiya2, Jessica Alföldi3, Alison P. Lee4, Shaohua Fan5, Hervé Philippe6, Iain MacCallum3, Ingo Braasch7, Tereza Manousaki5, Igor Schneider8, Nicolas Rohner9, Chris L. Organ10, Domitille Chalopin11, J. Joshua Smith12, Mark Robinson1, Rosemary A. Dorrington13, Marco Gerdol14, Bronwen Aken15, Maria Assunta Biscotti16, Marco Barucca16, Denis Baurain17, Aaron M. Berlin3, Gregory L. Blatch13, Gregory L. Blatch18, Francesco Buonocore, Thorsten Burmester19, Michael S. Campbell10, Adriana Canapa16, John P. Cannon20, Alan Christoffels21, Gianluca De Moro14, Adrienne L. Edkins13, Lin Fan3, Anna Maria Fausto, Nathalie Feiner5, Mariko Forconi16, Junaid Gamieldien21, Sante Gnerre3, Andreas Gnirke3, Jared V. Goldstone22, Wilfried Haerty23, Mark E. Hahn22, Uljana Hesse21, Steve Hoffmann24, Jeremy Johnson3, Sibel I. Karchner22, Shigehiro Kuraku5, Marcia Lara3, Joshua Z. Levin3, Gary W. Litman20, Evan Mauceli3, Evan Mauceli9, Tsutomu Miyake25, M. Gail Mueller26, David R. Nelson27, Anne Nitsche24, Ettore Olmo16, Tatsuya Ota28, Alberto Pallavicini14, Sumir Panji21, Barbara Picone21, Chris P. Ponting23, Sonja J. Prohaska24, Dariusz Przybylski3, Nil Ratan Saha1, Vydianathan Ravi4, Filipe J. Ribeiro3, Tatjana Sauka-Spengler23, Giuseppe Scapigliati, Stephen M. J. Searle15, Ted Sharpe3, Oleg Simakov5, Peter F. Stadler24, John J. Stegeman22, Kenta Sumiyama29, Diana Tabbaa3, Hakim Tafer24, Jason Turner-Maier3, Peter van Heusden21, Simon D. M. White15, Louise Williams3, Mark Yandell10, Henner Brinkmann6, Jean Nicolas Volff11, Clifford J. Tabin9, Neil H. Shubin30, Manfred Schartl31, David B. Jaffe3, John H. Postlethwait7, Byrappa Venkatesh4, Federica Di Palma3, Eric S. Lander3, Axel Meyer5, Kerstin Lindblad-Toh3, Kerstin Lindblad-Toh32 
18 Apr 2013-Nature
TL;DR: Through a phylogenomic analysis, it is concluded that the lungfish, and not the coelacanth, is the closest living relative of tetrapods.
Abstract: The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.

601 citations

Journal ArticleDOI
TL;DR: The dihydropyrimidinase related protein 2 (DRP‐2), which is involved in the axonal growth and guidance, showed significantly increased level in protein carbonyls in AD brain, suggesting a role for impaired mechanism of neural network formation in AD.
Abstract: Alzheimer's disease (AD) is a neurodegenerative disorder in which oxidative stress has been implicated as an important event in the progression of the pathology. In particular, it has been shown that protein modification by reactive oxygen species (ROS) occurs to a greater extent in AD than in control brain, suggesting a possible role for oxidation-related decrease in protein function in the process of neurodegeneration. Oxidative damage to proteins, assessed by measuring the protein carbonyl content, is involved in several events such as loss in specific protein function, abnormal protein clearance, depletion of the cellular redox-balance and interference with the cell cycle, and, ultimately, neuronal death. The present investigation represents a further step in understanding the relationship between oxidative modification of protein and neuronal death in AD. Previously, we used our proteomics approach, which successfully substitutes for labor-intensive immunochemical analysis, to detect proteins and identified creatine kinase, glutamine synthase and ubiquitin carboxy-terminal hydrolase L-1 as specifically oxidized proteins in AD brain. In this report we again applied our proteomics approach to identify new targets of protein oxidation in AD inferior parietal lobe (IPL). The dihydropyrimidinase related protein 2 (DRP-2), which is involved in the axonal growth and guidance, showed significantly increased level in protein carbonyls in AD brain, suggesting a role for impaired mechanism of neural network formation in AD. Additionally, the cytosolic enzyme alpha-enolase was identified as a target of protein oxidation and is involved the glycolytic pathway in the pathological events of AD. Finally, the heat shock cognate 71 (HSC-71) revealed increased, but not significant, oxidation in AD brain. These results are discussed with reference to potential involvement of these oxidatively modified proteins in neurodegeneration in AD brain.

600 citations


Authors

Showing all 44305 results

NameH-indexPapersCitations
Mark P. Mattson200980138033
Carlo M. Croce1981135189007
Charles A. Dinarello1901058139668
Richard A. Gibbs172889249708
Gang Chen1673372149819
David A. Bennett1671142109844
Carl W. Cotman165809105323
Rodney S. Ruoff164666194902
David Tilman158340149473
David Cella1561258106402
Richard E. Smalley153494111117
Deepak L. Bhatt1491973114652
Kevin Murphy146728120475
Jian Yang1421818111166
Thomas J. Smith1401775113919
Network Information
Related Institutions (5)
University of Minnesota
257.9K papers, 11.9M citations

98% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

97% related

University of Pittsburgh
201K papers, 9.6M citations

96% related

Cornell University
235.5K papers, 12.2M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023108
2022532
20214,331
20204,216
20193,965
20183,605