scispace - formally typeset
Search or ask a question

Showing papers on "Amyotrophic lateral sclerosis published in 2014"


Journal ArticleDOI
TL;DR: Current literature of the major genes underlying ALS, SOD1, TARDBP, FUS, OPTN, VCP, UBQLN2, C9ORF72 and PFN1 are summarized and how each new genetic discovery is broadening the phenotype associated with the clinical entity the authors know as ALS is outlined.
Abstract: Considerable progress has been made in unraveling the genetic etiology of amyotrophic lateral sclerosis (ALS), the most common form of adult-onset motor neuron disease and the third most common neurodegenerative disease overall. Here we review genes implicated in the pathogenesis of motor neuron degeneration and how this new information is changing the way we think about this fatal disorder. Specifically, we summarize current literature of the major genes underlying ALS, SOD1, TARDBP, FUS, OPTN, VCP, UBQLN2, C9ORF72 and PFN1, and evaluate the information being gleaned from genome-wide association studies. We also outline emerging themes in ALS research, such as next-generation sequencing approaches to identify de novo mutations, the genetic convergence of familial and sporadic ALS, the proposed oligogenic basis for the disease, and how each new genetic discovery is broadening the phenotype associated with the clinical entity we know as ALS.

1,298 citations


Journal ArticleDOI
TL;DR: It is shown that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cell-derived motor neurons from patients harboring superoxide dismutase 1 (SOD1), C9orf72, and fused-in-sarcoma mutations.

574 citations


Journal ArticleDOI
05 Mar 2014-Neuron
TL;DR: This study shows that selective NF-κB inhibition in ALS astrocytes is not sufficient to rescue motor neuron (MN) death, and suggests a novel therapeutic target that can be modulated to slow the progression of ALS and possibly other neurodegenerative diseases by which microglial activation plays a role.

494 citations


Journal ArticleDOI
TL;DR: The phenotypic variability of ALS is reviewed and how it is reflected in familial and sporadic ALS, in the degree of upper and lower motor neuron involvement, in motor and extramotor involvement, and in the spectrum of ALS and frontotemporal dementia.
Abstract: Amyotrophic lateral sclerosis (ALS) is a genotypically and phenotypically heterogeneous disease, as reflected in the variability in age and site of onset, extent of extramotor involvement, and survival. Cognitive involvement is also common, and corroborates the connection between ALS and frontotemporal lobar degeneration. In this article, Robberecht and Swinnen review phenotypic heterogeneity in ALS and discuss some of its implications for understanding ALS pathogenesis and development of therapeutic interventions. Classic textbook neurology teaches that amyotrophic lateral sclerosis (ALS) is a degenerative disease that selectively affects upper and lower motor neurons and is fatal 3–5 years after onset—a description which suggests that the clinical presentation of ALS is very homogenous. However, clinical and postmortem observations, as well as genetic studies, demonstrate that there is considerable variability in the phenotypic expression of ALS. Here, we review the phenotypic variability of ALS and how it is reflected in familial and sporadic ALS, in the degree of upper and lower motor neuron involvement, in motor and extramotor involvement, and in the spectrum of ALS and frontotemporal dementia. Furthermore, we discuss some unusual clinical characteristics regarding presentation, age at onset and disease progression. Finally, we address the importance of this variability for understanding the pathogenesis of ALS and for the development of therapeutic strategies.

444 citations



Journal ArticleDOI
TL;DR: The progression of the disease is discussed from the viewpoint of the potential biomarkers described to date in human and animal model samples and potential therapeutic strategies for ALS treatment and future, innovative perspectives are considered.
Abstract: Since amyotrophic lateral sclerosis (ALS) was discovered and described in 1869 as a neurodegenerative disease in which motor neuron death is induced, a wide range of biomarkers have been selected to identify therapeutic targets. ALS shares altered molecular pathways with other neurodegenerative diseases, such as Alzheimer’s, Huntington’s, and Parkinson’s diseases. However, the molecular targets that directly influence its aggressive nature remain unknown. What is the first link in the neurodegenerative chain of ALS that makes this disease so peculiar? In this review, we will discuss the progression of the disease from the viewpoint of the potential biomarkers described to date in human and animal model samples. Finally, we will consider potential therapeutic strategies for ALS treatment and future, innovative perspectives.

402 citations


Journal ArticleDOI
TL;DR: Exome sequencing data provide more evidence supporting the role of aberrant RNA processing in motor neuron degeneration in ALS kindreds and observed MATR3 pathology in ALS-affected spinal cords with and withoutMATR3 mutations.
Abstract: MATR3 is an RNA- and DNA-binding protein that interacts with TDP-43, a disease protein linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Using exome sequencing, we identified mutations in MATR3 in ALS kindreds. We also observed MATR3 pathology in ALS-affected spinal cords with and without MATR3 mutations. Our data provide more evidence supporting the role of aberrant RNA processing in motor neuron degeneration.

396 citations


Journal ArticleDOI
TL;DR: Reprogramming and stem cell differentiation approaches with genome engineering and RNA sequencing are combined to define the transcriptional and functional changes that are induced in human motor neurons by mutant SOD1, indicating that at least a subset of these changes are more broadly conserved in ALS.

386 citations


Journal ArticleDOI
13 Jun 2014-Brain
TL;DR: A large family with a late-onset phenotype including motor neuron disease, cognitive decline resembling frontotemporal dementia, cerebellar ataxia and myopathy is reported, showing that mitochondrial disease may be at the origin of some of these phenotypes.
Abstract: Mitochondrial DNA instability disorders are responsible for a large clinical spectrum, among which amyotrophic lateral sclerosis-like symptoms and frontotemporal dementia are extremely rare. We report a large family with a late-onset phenotype including motor neuron disease, cognitive decline resembling frontotemporal dementia, cerebellar ataxia and myopathy. In all patients, muscle biopsy showed ragged-red and cytochrome c oxidase-negative fibres with combined respiratory chain deficiency and abnormal assembly of complex V. The multiple mitochondrial DNA deletions found in skeletal muscle revealed a mitochondrial DNA instability disorder. Patient fibroblasts present with respiratory chain deficiency, mitochondrial ultrastructural alterations and fragmentation of the mitochondrial network. Interestingly, expression of matrix-targeted photoactivatable GFP showed that mitochondrial fusion was not inhibited in patient fibroblasts. Using whole-exome sequencing we identified a missense mutation (c.176C>T; p.Ser59Leu) in the CHCHD10 gene that encodes a coiled-coil helix coiled-coil helix protein, whose function is unknown. We show that CHCHD10 is a mitochondrial protein located in the intermembrane space and enriched at cristae junctions. Overexpression of a CHCHD10 mutant allele in HeLa cells led to fragmentation of the mitochondrial network and ultrastructural major abnormalities including loss, disorganization and dilatation of cristae. The observation of a frontotemporal dementia-amyotrophic lateral sclerosis phenotype in a mitochondrial disease led us to analyse CHCHD10 in a cohort of 21 families with pathologically proven frontotemporal dementia-amyotrophic lateral sclerosis. We identified the same missense p.Ser59Leu mutation in one of these families. This work opens a novel field to explore the pathogenesis of the frontotemporal dementia-amyotrophic lateral sclerosis clinical spectrum by showing that mitochondrial disease may be at the origin of some of these phenotypes.

376 citations


Journal ArticleDOI
TL;DR: It is shown that individual neurons vary in their ability to clear TDP 43 and are exquisitely sensitive to TDP43 levels, and that autophagy induction mitigates neurodegeneration by acting directly on TDP44 clearance.
Abstract: Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have distinct clinical features but a common pathology--cytoplasmic inclusions rich in transactive response element DNA-binding protein of 43 kDa (TDP43). Rare TDP43 mutations cause ALS or FTD, but abnormal TDP43 levels and localization may cause disease even if TDP43 lacks a mutation. Here we show that individual neurons vary in their ability to clear TDP43 and are exquisitely sensitive to TDP43 levels. To measure TDP43 clearance, we developed and validated a single-cell optical method that overcomes the confounding effects of aggregation and toxicity and discovered that pathogenic mutations shorten TDP43 half-life. New compounds that stimulate autophagy improved TDP43 clearance and localization and enhanced survival in primary murine neurons and in human stem cell-derived neurons and astrocytes harboring mutant TDP43. These findings indicate that the levels and localization of TDP43 critically determine neurotoxicity and show that autophagy induction mitigates neurodegeneration by acting directly on TDP43 clearance.

362 citations


Journal ArticleDOI
05 Mar 2014-Neuron
TL;DR: A fully humanized coculture model composed of human adult primary sporadic ALS (sALS) astrocytes and human embryonic stem-cell-derived MNs is devised, which reproduces the cardinal features of human ALS and constitutes a potential therapeutic target for this incurable disease.

Journal ArticleDOI
TL;DR: The efficacy of a small molecule inhibitor of eIF2α phosphorylation in ALS models was investigated and it was found that treatment with this inhibitor mitigated TDP-43 toxicity in flies and mammalian neurons.
Abstract: Nancy Bonini and colleagues performed a genome-wide yeast screen for modifiers of TDP-43 toxicity and identified genes in RNA metabolism, including several RNA-binding proteins with connections to stress granules. They determined that therapeutic modulation of stress granule–associated eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models in flies and primary mammalian neurons.

Journal ArticleDOI
TL;DR: There is an explosion of data indicating that genetic deletion and pharmacological blockade of P2X7Rs alter responsiveness in animal models of neurological disorders, implicating P2x7Rs as drug targets in a variety of CNS pathology.

Journal ArticleDOI
TL;DR: Easy production and expansion of i-astrocytes now enables rapid disease modeling and high-throughput drug screening to alleviate astrocyte-derived toxicity, suggesting a common mechanism of ALS.
Abstract: Amyotrophic lateral sclerosis (ALS) causes motor neuron degeneration, paralysis, and death. Accurate disease modeling, identifying disease mechanisms, and developing therapeutics is urgently needed. We previously reported motor neuron toxicity through postmortem ALS spinal cord-derived astrocytes. However, these cells can only be harvested after death, and their expansion is limited. We now report a rapid, highly reproducible method to convert adult human fibroblasts from living ALS patients to induced neuronal progenitor cells and subsequent differentiation into astrocytes (i-astrocytes). Non-cell autonomous toxicity to motor neurons is found following coculture of i-astrocytes from familial ALS patients with mutation in superoxide dismutase or hexanucleotide expansion in C9orf72 (ORF 72 on chromosome 9) the two most frequent causes of ALS. Remarkably, i-astrocytes from sporadic ALS patients are as toxic as those with causative mutations, suggesting a common mechanism. Easy production and expansion of i-astrocytes now enables rapid disease modeling and high-throughput drug screening to alleviate astrocyte-derived toxicity.

Journal ArticleDOI
TL;DR: Current understanding of the normal function of FUS is summarized, its role in the pathology of ALS, FTLD, essential tremor and other neurodegenerative diseases is described, and comments on the underlying pathogenetic mechanisms are included.
Abstract: The neurodegenerative diseases are a diverse group of disorders characterized by progressive loss of specific groups of neurons. These diseases affect different populations, and have a variable age of onset, clinical symptoms, and pathological findings. Variants in the FUS gene, which encodes an RNA-binding protein, have been identified as causative or risk factors for amyotrophic lateral sclerosis (ALS), essential tremor and rare forms of frontotemporal lobar degeneration (FTLD). Additionally, abnormal aggregation of FUS protein has been reported in multiple neurodegenerative diseases, including ALS, FTLD and the polyglutamine diseases, suggesting a role for FUS in the pathogenesis of these neurodegenerative diseases. This Review summarizes current understanding of the normal function of FUS, and describes its role in the pathology of ALS, FTLD, essential tremor and other neurodegenerative diseases. Comments on the underlying pathogenetic mechanisms of these FUS-related disorders are included. Finally, the clinical implications of recent advances in FUS research are discussed. Further understanding of the role of FUS in neurodegenerative diseases might lead to improvements in the treatment and prevention of these disorders.

Journal ArticleDOI
TL;DR: This review focuses on the role of axon guidance molecules on the stability of the cytoskeleton and how these molecules may directly influence the cells of the NMJ in a way that may initiate or facilitate the dismantling of the neuromuscular synapse in the presymptomatic stages of ALS.
Abstract: Amyotrophic Lateral Sclerosis (ALS) is being redefined as a distal axonopathy, in that many molecular changes influencing motor neuron degeneration occur at the neuromuscular junction (NMJ) at very early stages of the disease prior to symptom onset. A huge variety of genetic and environmental causes have been associated with ALS, and interestingly, although the cause of the disease can differ, both sporadic and familial forms of ALS show a remarkable similarity in terms of disease progression and clinical manifestation. The NMJ is a highly specialized synapse, allowing for controlled signaling between muscle and nerve necessary for skeletal muscle function. In this review we will evaluate the clinical, animal experimental and cellular/molecular evidence that supports the idea of ALS as a distal axonopathy. We will discuss the early molecular mechanisms that occur at the NMJ, which alter the functional abilities of the NMJ. Specifically, we focus on the role of axon guidance molecules on the stability of the cytoskeleton and how these molecules may directly influence the cells of the NMJ in a way that may initiate or facilitate the dismantling of the neuromuscular synapse in the presymptomatic stages of ALS.

Journal ArticleDOI
22 Jan 2014-Neuron
TL;DR: In ALS model mice expressing mutant superoxide dismutase (SOD1), reduction of MMP-9 function using gene ablation, viral gene therapy, or pharmacological inhibition significantly delayed muscle denervation and defined M MP-9 as a candidate therapeutic target for ALS.

Journal ArticleDOI
TL;DR: Comparing the use of two different Southern blot probes for detection of repeat expansions in an amyotrophic lateral sclerosis and frontotemporal lobar degeneration pathological cohort and determining the levels of C9orf72 transcript variants and protein isoforms in patients versus control subjects suggest that a reduction in C 9orf72 protein may be a consequence of the disease.

Journal ArticleDOI
TL;DR: This study demonstrates that the TREM2 p.R47H variant was more common in patients with ALS than in the controls and is therefore a significant risk factor for ALS, and highlights the T REM2 signaling pathway as a therapeutic target in ALS and other neurodegenerative diseases.
Abstract: Importance Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which microglia play a significant and active role. Recently, a rare missense variant (p.R47H) in the microglial activating gene TREM2 was found to increase the risk of several neurodegenerative diseases, including Alzheimer disease. Whether the p.R47H variant is a risk factor for ALS is not known. Objectives To determine whether p.R47H (rs75932628) in TREM2 is a risk factor for ALS and assess whether TREM2 expression is dysregulated in disease. Design, Setting, and Participants Samples of DNA from 923 individuals with sporadic ALS and 1854 healthy control individuals self-reported as non-Hispanic white were collected from ALS clinics in the United States and genotyped for the p.R47H variant in TREM2 . Clinical data were obtained on ALS participants for genotype/phenotype correlations. Expression of TREM2 was measured by quantitative polymerase chain reaction and compared in spinal cord samples from 18 autopsied patients with ALS and 12 neurologically healthy controls, as well as from wild-type and transgenic SOD1 G93A mice. Main Outcomes and Measures Minor allele frequency of rs75932628 and relative expression of TREM2 . Results The TREM2 variant p.R47H was more common in patients with ALS than in the controls and is therefore a significant risk factor for ALS (odds ratio, 2.40; 95% CI, 1.29-4.15; P = 4.1×10 −3 ). Furthermore, TREM2 expression was increased in spinal cord samples from ALS patients and SOD1 G93A mice ( P = 2.8×10 −4 and P = 2.8×10 −9 , respectively), confirming dysregulated TREM2 in disease. Expression of TREM2 in the human spinal cord was negatively correlated with survival ( P = .04) but not with other phenotypic aspects of disease. Conclusions and Relevance This study demonstrates that the TREM2 p.R47H variant is a potent risk factor for sporadic ALS. To our knowledge, these findings identify the first genetic influence on neuroinflammation in ALS and highlight the TREM2 signaling pathway as a therapeutic target in ALS and other neurodegenerative diseases.

Journal ArticleDOI
TL;DR: It is found that trehalose significantly delays disease onset prolongs life span, and reduces motor neuron loss in the spinal cord of SOD1G93A mice, and autophagosome-lysosome fusion is a possible therapeutic target for the treatment of ALS.
Abstract: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder caused by selective motor neuron degeneration. Abnormal protein aggregation and impaired protein degradation pathways may contribute to the disease pathogenesis. Although it has been reported that autophagy is altered in patients and animal model of ALS, little is known about the role of autophagy in motor neuron degeneration in this disease. Our previous study shows that rapamycin, an MTOR-dependent autophagic activator, accelerates disease progression in the SOD1G93A mouse model of ALS. In the present report, we have assessed the role of the MTOR-independent autophagic pathway in ALS by determining the effect of the MTOR-independent autophagic inducer trehalose on disease onset and progression, and on motor neuron degeneration in SOD1G93A mice. We have found that trehalose significantly delays disease onset prolongs life span, and reduces motor neuron loss in the spinal cord of SOD1G93A mice. Most importantly, we have docume...

Journal ArticleDOI
TL;DR: The dorsolateral motor nuclei columns of the cervical and lumbosacral anterior horn may be the earliest foci of pTDP-43 pathology in the spinal cord, and gray matter oligodendroglial involvement is an early event in the ALS disease process that possibly heralds subsequent involvement of neurons by pT DP- 43 pathology.
Abstract: We examined the phosphorylated 43-kDa TAR DNA-binding protein (pTDP-43) inclusions as well as neuronal loss in full-length spinal cords and five selected regions of the central nervous system from 36 patients with amyotrophic lateral sclerosis (ALS) and 10 age-matched normal controls. The most severe neuronal loss and pTDP-43 lesions were seen in lamina IX motor nuclei columns 4, 6, and 8 of lower cervical segments and in columns 9–11 of lumbosacral segments. Severity of pTDP-43 pathology and neuronal loss correlated closely with gray and white matter oligodendroglial involvement and was linked to onset of disease, with severe involvement of columns 4, 6, and 8 of upper extremity onset cases and severe involvement of columns of 9, 10, and 11 in cases with lower extremity onset. Severe TDP-43 lesions and neuronal loss were observed in stage 4 cases and sometimes included Onuf’s nucleus. Notably, three cases displayed pTDP-43 aggregates in the midbrain oculomotor nucleus, which we had not seen previously even in cases with advanced (i.e., stage 4) pathology. pTDP-43 aggregates were observed in neurons of Clarke’s column in 30.6 % of cases but rarely in the intermediolateral nucleus (IML). Gray matter oligodendroglial pTDP-43 inclusions were present in areas devoid of neuronal pTDP-43 aggregates and neuronal loss. Taken together, our findings indicate that (1) the dorsolateral motor nuclei columns of the cervical and lumbosacral anterior horn may be the earliest foci of pTDP-43 pathology in the spinal cord, (2) gray matter oligodendroglial involvement is an early event in the ALS disease process that possibly heralds subsequent involvement of neurons by pTDP-43 pathology, and (3) in some very advanced cases, there is oculomotor nucleus involvement, which may constitute an additional neuropathological stage (designated here as stage 5) of pTDP-43 pathology in ALS.

Journal ArticleDOI
TL;DR: Dysfunction of molecular pathways, including glutamate-mediated excitotoxicity, has been identified in sporadic and familial ALS, indicating the existence of a common pathogenic pathway and novel therapeutic approaches have been suggested, providing hope for feasible treatment of ALS.

Journal ArticleDOI
TL;DR: Zebrafish offer an excellent alternative vertebrate model for the molecular and genetic dissection of MND mechanisms, including the conservation of genome and physiological processes and applicable in vivo tools, including easy imaging, loss or gain of function methods, behavioral tests to examine changes in motor activity, and the ease of simultaneous chemical/drug testing on large numbers of animals.

Journal ArticleDOI
TL;DR: In the past two decades, structural and functional neuroimaging findings have greatly modified longstanding notions regarding the pathophysiology of amyotrophic lateral sclerosis (ALS) as mentioned in this paper, which has shown that anatomical and functional lesions spread beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain.
Abstract: In the past two decades, structural and functional neuroimaging findings have greatly modified longstanding notions regarding the pathophysiology of amyotrophic lateral sclerosis (ALS). Neuroimaging studies have shown that anatomical and functional lesions spread beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. Both MRI and PET studies have shown early and diffuse loss of inhibitory cortical interneurons in the motor cortex (increased levels of functional connectivity and loss of GABAergic neurons, respectively) and diffuse gliosis in white-matter tracts. In ALS endophenotypes, neuroimaging has also shown a diverse spreading of lesions and a dissimilar impairment of functional and structural connections. A possible role of PET in the diagnosis of ALS has recently been proposed. However, most neuroimaging studies have pitfalls, such as a small number and poor clinical characterisation of patients, absence of adequate controls, and scarcity of longitudinal assessments. Studies involving international collaborations, standardised assessments, and large patient cohorts will overcome these shortcomings and provide further insight into the pathogenesis of ALS.

Journal ArticleDOI
TL;DR: Insights into the complex intercellular perturbations underlying ALS, including target identification, will enhance efforts to develop effective therapeutic approaches for preventing or reversing symptomatic progression of this devastating disease.
Abstract: Amyotrophic lateral sclerosis (ALS) is the most common and most aggressive form of adult motor neuron (MN) degeneration. The cause of the disease is still unknown, but some protein mutations have been linked to the pathological process. Loss of upper and lower MNs results in progressive muscle paralysis and ultimately death due to respiratory failure. Although initially thought to derive from the selective loss of MNs, the pathogenic concept of non-cell-autonomous disease has come to the forefront for the contribution of glial cells in ALS, in particular microglia. Recent studies suggest that microglia may have a protective effect on MN in an early stage. Conversely, activated microglia contribute and enhance MN death by secreting neurotoxic factors, and impaired microglial function at the end-stage may instead accelerate disease progression. However, the nature of microglial-neuronal interactions that lead to MN degeneration remains elusive. We review the contribution of the neurodegenerative network in ALS pathology, with a special focus on each glial cell type from data obtained in the transgenic SOD1G93A rodents, the most widely used model. We further discuss the diverse roles of neuroinflammation and microglia phenotypes in the modulation of ALS pathology. We provide information on the processes associated with dysfunctional cell-cell communication and summarize findings on pathological cross-talk between neurons and astroglia, and neurons and microglia, as well as on the spread of pathogenic factors. We also highlight the relevance of neurovascular disruption and exosome trafficking to ALS pathology. The harmful and beneficial influences of NG2 cells, oligodendrocytes and Schwann cells will be discussed as well. Insights into the complex intercellular perturbations underlying ALS, including target identification, will enhance our efforts to develop effective therapeutic approaches for preventing or reversing symptomatic progression of this devastating disease.

Journal ArticleDOI
01 Jun 2014-Brain
TL;DR: A new methodological diffusion tensor imaging-based approach to automatically analyse in vivo the fibre tracts that are prone to be involved at each neuropathological stage of amyotrophic lateral sclerosis, enlarges the spectrum of potential non-invasive surrogate markers as a neuroimaging-based read-out for amyotropolitan sclerosis studies within a clinical context.
Abstract: Diffusion tensor imaging can identify amyotrophic lateral sclerosis-associated patterns of brain alterations at the group level. Recently, a neuropathological staging system for amyotrophic lateral sclerosis has shown that amyotrophic lateral sclerosis may disseminate in a sequential regional pattern during four disease stages. The objective of the present study was to apply a new methodological diffusion tensor imaging-based approach to automatically analyse in vivo the fibre tracts that are prone to be involved at each neuropathological stage of amyotrophic lateral sclerosis. Two data samples, consisting of 130 diffusion tensor imaging data sets acquired at 1.5 T from 78 patients with amyotrophic lateral sclerosis and 52 control subjects; and 55 diffusion-tensor imaging data sets at 3.0 T from 33 patients with amyotrophic lateral sclerosis and 22 control subjects, were analysed by a tract of interest-based fibre tracking approach to analyse five tracts that become involved during the course of amyotrophic lateral sclerosis: the corticospinal tract (stage 1); the corticorubral and the corticopontine tracts (stage 2); the corticostriatal pathway (stage 3); the proximal portion of the perforant path (stage 4); and two reference pathways. The statistical analyses of tracts of interest showed differences between patients with amyotrophic lateral sclerosis and control subjects for all tracts. The significance level of the comparisons at the group level was lower, the higher the disease stage with corresponding involved fibre tracts. Both the clinical phenotype as assessed by the amyotrophic lateral sclerosis functional rating scale-revised and disease duration correlated significantly with the resulting staging scheme. In summary, the tract of interest-based technique allowed for individual analysis of predefined tract structures, thus making it possible to image in vivo the disease stages in amyotrophic lateral sclerosis. This approach can be used not only for individual clinical work-up purposes, but enlarges the spectrum of potential non-invasive surrogate markers as a neuroimaging-based read-out for amyotrophic lateral sclerosis studies within a clinical context.

Journal ArticleDOI
TL;DR: Past and current methods used for the identification of FALS and SALS associated genes are reviewed and a risk-based classification for these are proposed and the three most recently discovered 'high risk' genes in ALS are summarized.

Journal ArticleDOI
TL;DR: Screening of large cohorts of ALS and FTLD cohorts has identified that C9ORF72-ALS is represented throughout the clinical spectrum of ALS phenotypes, though in comparison with other genetic subtypes, C9 ORF72 carriers have a higher incidence of bulbar onset disease.
Abstract: The GGGGCC (G4C2) repeat expansion in C9ORF72 is the most common cause of familial amyotrophic lateral sclerosis (ALS), frontotemporal lobar dementia (FTLD) and ALS–FTLD, as well as contributing to sporadic forms of these diseases. Screening of large cohorts of ALS and FTLD cohorts has identified that C9ORF72-ALS is represented throughout the clinical spectrum of ALS phenotypes, though in comparison with other genetic subtypes, C9ORF72 carriers have a higher incidence of bulbar onset disease. In contrast, C9ORF72-FTLD is predominantly associated with behavioural variant FTD, which often presents with psychosis, most commonly in the form of hallucinations and delusions. However, C9ORF72 expansions are not restricted to these clinical phenotypes. There is a higher than expected incidence of parkinsonism in ALS patients with C9ORF72 expansions, and the G4C2 repeat has also been reported in other motor phenotypes, such as primary lateral sclerosis, progressive muscular atrophy, corticobasal syndrome and Huntington-like disorders. In addition, the expansion has been identified in non-motor phenotypes including Alzheimer’s disease and Lewy body dementia. It is not currently understood what is the basis of the clinical variation seen with the G4C2 repeat expansion. One potential explanation is repeat length. Sizing of the expansion by Southern blotting has established that there is somatic heterogeneity, with different expansion lengths in different tissues, even within the brain. To date, no correlation with expansion size and clinical phenotype has been established in ALS, whilst in FTLD only repeat size in the cerebellum was found to correlate with disease duration. Somatic heterogeneity suggests there is a degree of instability within the repeat and evidence of anticipation has been reported with reducing age of onset in subsequent generations. This variability/instability in expansion length, along with its interactions with environmental and genetic modifiers, such as TMEM106B, may be the basis of the differing clinical phenotypes arising from the mutation.

Journal ArticleDOI
01 Sep 2014-Brain
TL;DR: A characteristic white matter tract pathological signature is seen cross-sectionally, while cortical involvement dominates longitudinally in amyotrophic lateral sclerosis, which has implications for the development of biomarkers for diagnosis versus therapeutic monitoring.
Abstract: Diagnosis, stratification and monitoring of disease progression in amyotrophic lateral sclerosis currently rely on clinical history and examination. The phenotypic heterogeneity of amyotrophic lateral sclerosis, including extramotor cognitive impairments is now well recognized. Candidate biomarkers have shown variable sensitivity and specificity, and studies have been mainly undertaken only cross-sectionally. Sixty patients with sporadic amyotrophic lateral sclerosis (without a family history of amyotrophic lateral sclerosis or dementia) underwent baseline multimodal magnetic resonance imaging at 3 T. Grey matter pathology was identified through analysis of T1-weighted images using voxel-based morphometry. White matter pathology was assessed using tract-based spatial statistics analysis of indices derived from diffusion tensor imaging. Cross-sectional analyses included group comparison with a group of healthy controls (n = 36) and correlations with clinical features, including regional disability, clinical upper motor neuron signs and cognitive impairment. Patients were offered 6-monthly follow-up MRI, and the last available scan was used for a separate longitudinal analysis (n = 27). In cross-sectional study, the core signature of white matter pathology was confirmed within the corticospinal tract and callosal body, and linked strongly to clinical upper motor neuron burden, but also to limb disability subscore and progression rate. Localized grey matter abnormalities were detected in a topographically appropriate region of the left motor cortex in relation to bulbar disability, and in Broca’s area and its homologue in relation to verbal fluency. Longitudinal analysis revealed progressive and widespread changes in the grey matter, notably including the basal ganglia. In contrast there was limited white matter pathology progression, in keeping with a previously unrecognized limited change in individual clinical upper motor neuron scores, despite advancing disability. Although a consistent core white matter pathology was found cross-sectionally, grey matter pathology was dominant longitudinally, and included progression in clinically silent areas such as the basal ganglia, believed to reflect their wider cortical connectivity. Such changes were significant across a range of apparently sporadic patients rather than being a genotype-specific effect. It is also suggested that the upper motor neuron lesion in amyotrophic lateral sclerosis may be relatively constant during the established symptomatic period. These findings have implications for the development of effective diagnostic versus therapeutic monitoring magnetic resonance imaging biomarkers. Amyotrophic lateral sclerosis may be characterized initially by a predominantly white matter tract pathological signature, evolving as a widespread cortical network degeneration.

Journal ArticleDOI
TL;DR: The results suggest that TDP-43 dysfunction in astrocytes is an important driver for motor neuron degeneration and clinical phenotypes of ALS, and that the CNS, particularly motor neurons, possess a heightened vulnerability to the protein.
Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease that causes motor neuron degeneration, progressive motor dysfunction, paralysis, and death. Although multiple causes have been identified for this disease, >95% of ALS cases show aggregation of transactive response DNA binding protein (TDP-43) accompanied by its nuclear depletion. Therefore, the TDP-43 pathology may be a converging point in the pathogenesis that originates from various initial triggers. The aggregation is thought to result from TDP-43 misfolding, which could generate cellular toxicity. However, the aggregation as well as the nuclear depletion could also lead to a partial loss of TDP-43 function or TDP-43 dysfunction. To investigate the impact of TDP-43 dysfunction, we generated a transgenic mouse model for a partial loss of TDP-43 function using transgenic RNAi. These mice show ubiquitous transgene expression and TDP-43 knockdown in both the periphery and the central nervous system (CNS). Strikingly, these mice develop progressive neurodegeneration prominently in cortical layer V and spinal ventral horn, motor dysfunction, paralysis, and death. Furthermore, examination of splicing patterns of TDP-43 target genes in human ALS revealed changes consistent with TDP-43 dysfunction. These results suggest that the CNS, particularly motor neurons, possess a heightened vulnerability to TDP-43 dysfunction. Additionally, because TDP-43 knockdown predominantly occur in astrocytes in the spinal cord of these mice, our results suggest that TDP-43 dysfunction in astrocytes is an important driver for motor neuron degeneration and clinical phenotypes of ALS.