scispace - formally typeset
Search or ask a question

Showing papers on "Antibody published in 2012"


Journal ArticleDOI
TL;DR: V vaccines that are designed to induce higher levels of V1V2 antibodies and lower levels of Env-specific IgA antibodies than are induced by the RV144 vaccine may have improved efficacy against HIV-1 infection.
Abstract: Background In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case–control analysis to identify antibody and cellular immune correlates of infection risk. Methods In pilot studies conducted with RV144 blood samples, 17 antibody or cellular assays met prespecified criteria, of which 6 were chosen for primary analysis to determine the roles of T-cell, IgG antibody, and IgA antibody responses in the modulation of infection risk. Assays were performed on samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after final immunization, to evaluate whether immune-response variables predicted HIV-1 infection through 42 months of follow-up. Results Of six primary variables, two correlated significantly with infection risk: the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of HIV-1 envelope proteins (Env) correlated inversely with the rate of HIV-1 infection (estimated odds...

1,666 citations


Journal ArticleDOI
TL;DR: Findings supporting the conclusion that IgE and mast cells can have both interdependent and independent roles in the complex immune responses that manifest clinically as asthma and other allergic disorders are discussed.
Abstract: Immunoglobulin E (IgE) antibodies and mast cells have been so convincingly linked to the pathophysiology of anaphylaxis and other acute allergic reactions that it can be difficult to think of them in other contexts. However, a large body of evidence now suggests that both IgE and mast cells are also key drivers of the long-term pathophysiological changes and tissue remodeling associated with chronic allergic inflammation in asthma and other settings. Such potential roles include IgE-dependent regulation of mast-cell functions, actions of IgE that are largely independent of mast cells and roles of mast cells that do not directly involve IgE. In this review, we discuss findings supporting the conclusion that IgE and mast cells can have both interdependent and independent roles in the complex immune responses that manifest clinically as asthma and other allergic disorders.

1,391 citations


Journal ArticleDOI
TL;DR: A strong synergy between the PD-1 and LAG-3 inhibitory pathways in tolerance to both self and tumor antigens is defined and it is argued strongly that dual blockade of these molecules represents a promising combinatorial strategy for cancer.
Abstract: Inhibitory receptors on immune cells are pivotal regulators of immune escape in cancer. Among these inhibitory receptors, CTLA-4 (targeted clinically by ipilimumab) serves as a dominant off-switch while other receptors such as PD-1 and LAG-3 seem to serve more subtle rheostat functions. However, the extent of synergy and cooperative interactions between inhibitory pathways in cancer remain largely unexplored. Here, we reveal extensive coexpression of PD-1 and LAG-3 on tumor-infiltrating CD4(+) and CD8(+) T cells in three distinct transplantable tumors. Dual anti-LAG-3/anti-PD-1 antibody treatment cured most mice of established tumors that were largely resistant to single antibody treatment. Despite minimal immunopathologic sequelae in PD-1 and LAG-3 single knockout mice, dual knockout mice abrogated self-tolerance with resultant autoimmune infiltrates in multiple organs, leading to eventual lethality. However, Lag3(-/-)Pdcd1(-/-) mice showed markedly increased survival from and clearance of multiple transplantable tumors. Together, these results define a strong synergy between the PD-1 and LAG-3 inhibitory pathways in tolerance to both self and tumor antigens. In addition, they argue strongly that dual blockade of these molecules represents a promising combinatorial strategy for cancer.

1,281 citations


Journal ArticleDOI
TL;DR: The factors that are important for Breg differentiation and for their effector function in both mouse and human are discussed.
Abstract: B cells are regarded for their capacity to produce antibody. However, recent advances in B cell biology have capitalized on old findings and demonstrated that B cells also release a broad variety of cytokines. As with T helper cells, B cells can be classified into subsets according to the cytokine milieu that they produce. One functional B cell subset, regulatory B cells (Bregs), has recently been shown to contribute to the maintenance of the fine equilibrium required for tolerance. Bregs restrain the excessive inflammatory responses that occur during autoimmune diseases or that can be caused by unresolved infections. Pivotal to Breg function is interleukin-10 (IL-10), which inhibits proinflammatory cytokines and supports regulatory T cell differentiation. This review reports and discusses the factors that are important for Breg differentiation and for their effector function in both mouse and human.

1,054 citations


Journal ArticleDOI
TL;DR: Inf influenza infection studies in healthy volunteers with no detectable antibodies to the challenge viruses H3N2 or H1N1 are conducted, finding a large increase in influenza-specific T cell responses by day 7, when virus was completely cleared from nasal samples and serum antibodies were still undetectable.
Abstract: Protective immunity against influenza virus infection is mediated by neutralizing antibodies, but the precise role of T cells in human influenza immunity is uncertain. We conducted influenza infection studies in healthy volunteers with no detectable antibodies to the challenge viruses H3N2 or H1N1. We mapped T cell responses to influenza before and during infection. We found a large increase in influenza-specific T cell responses by day 7, when virus was completely cleared from nasal samples and serum antibodies were still undetectable. Preexisting CD4+, but not CD8+, T cells responding to influenza internal proteins were associated with lower virus shedding and less severe illness. These CD4+ cells also responded to pandemic H1N1 (A/CA/07/2009) peptides and showed evidence of cytotoxic activity. These cells are an important statistical correlate of homotypic and heterotypic response and may limit severity of influenza infection by new strains in the absence of specific antibody responses. Our results provide information that may aid the design of future vaccines against emerging influenza strains.

860 citations


PatentDOI
23 Mar 2012-Science
TL;DR: In this article, the authors used X-ray crystallography and 454 pyrosequencing to characterize additional antibodies from HIV-1-infected individuals, revealing a convergent mode of binding of different antibodies to the same CD4-binding-site epitope.
Abstract: Antibody VRC01 represents a human immunoglobulin that neutralizes -∼90% of diverse HIV-1 isolates. To understand how such broadly neutralizing HIV-1 antibodies develop and recognize the viral envelope, we used X-ray crystallography and 454 pyrosequencing to characterize additional antibodies from HIV-1-infected individuals. Crystal structures revealed a convergent mode of binding of different antibodies to the same CD4-binding-site epitope. Antibody recognition was achieved through the evolution of complementary contact domains that were generated in diverse ways. Phylogenetic analysis of expressed heavy and light chains determined by deep sequencing revealed a common pathway of antibody heavy chain maturation confined to IGHV1-2*02 lineage that could pair with different light chains. The maturation pathway inferred by antibodyomics reveals that diverse antibodies evolve to a highly affinity-matured state to recognize an invariant viral structure, providing insight into the development and evolution of broadly neutralizing HIV-1 immunity.

763 citations


Journal ArticleDOI
14 Sep 2012-Science
TL;DR: Two antibodies, which bind to distinct regions of the viral hemagluttinin (HA) molecule, neutralize multiple strains from both lineages of influenza B virus, whereas the third antibody binds to the stem region of HA and is able to neutralize both influenza A and B strains.
Abstract: Identification of broadly neutralizing antibodies against influenza A viruses has raised hopes for the development of monoclonal antibody-based immunotherapy and "universal" vaccines for influenza. However, a substantial part of the annual flu burden is caused by two cocirculating, antigenically distinct lineages of influenza B viruses. Here, we report human monoclonal antibodies, CR8033, CR8071, and CR9114, that protect mice against lethal challenge from both lineages. Antibodies CR8033 and CR8071 recognize distinct conserved epitopes in the head region of the influenza B hemagglutinin (HA), whereas CR9114 binds a conserved epitope in the HA stem and protects against lethal challenge with influenza A and B viruses. These antibodies may inform on development of monoclonal antibody-based treatments and a universal flu vaccine for all influenza A and B viruses.

691 citations


Journal ArticleDOI
TL;DR: There is evidence that IgG transfer depends on the following: (i) maternal levels of total IgG and specific antibodies, (ii) gestational age, (iii) placental integrity, (iv) IgG subclass, and (v) nature of antigen, being more intense for thymus-dependent ones.
Abstract: Placental transfer of maternal IgG antibodies to the fetus is an important mechanism that provides protection to the infant while his/her humoral response is inefficient. IgG is the only antibody class that significantly crosses the human placenta. This crossing is mediated by FcRn expressed on syncytiotrophoblast cells. There is evidence that IgG transfer depends on the following: (i) maternal levels of total IgG and specific antibodies, (ii) gestational age, (iii) placental integrity, (iv) IgG subclass, and (v) nature of antigen, being more intense for thymus-dependent ones. These features represent the basis for maternal immunization strategies aimed at protecting newborns against neonatal and infantile infectious diseases. In some situations, such as mothers with primary immunodeficiencies, exogenous IgG acquired by intravenous immunoglobulin therapy crosses the placenta in similar patterns to endogenous immunoglobulins and may also protect the offspring from infections in early life. Inversely, harmful autoantibodies may cross the placenta and cause transitory autoimmune disease in the neonate.

686 citations


Journal ArticleDOI
TL;DR: Neutrophils around the marginal zone (MZ) of the spleen, a B cell area specialized in T cell–independent immunoglobulin responses to circulating antigen, are identified, which indicates that neutrophils generate an innate layer of antimicrobial immunoglOBulin defense by interacting with MZ B cells.
Abstract: Follicular T cells provide help to B cells to elicit antibody responses. Cerutti and colleagues show that neutrophils provide help to marginal-zone B cells that produce T cell–independent antibodies.

643 citations


Journal ArticleDOI
TL;DR: Research is under way to extend the applications of brentuximab vedotin and to advance the field by developing other ADCs with new linker and conjugation strategies.
Abstract: Progress has been made recently in developing antibody-drug conjugates (ADCs) that can selectively deliver cancer drugs to tumor cells. In principle, the idea is simple: by attaching drugs to tumor-seeking antibodies, target cells will be killed and nontarget cells will be spared. In practice, many parameters needed to be addressed to develop safe and effective ADCs, including the expression profiles of tumor versus normal tissues, the potency of the drug, the linker attaching the drug and placement of the drug on the antibody, and the pharmacokinetic and stability profiles of the resulting ADC. All these issues had been taken into account in developing brentuximab vedotin (Adcetris), an ADC that recently received accelerated approval by the US Food and Drug Administration for the treatment of relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma (ALCL). Research is under way to extend the applications of brentuximab vedotin and to advance the field by developing other ADCs with new linker and conjugation strategies.

612 citations


Journal ArticleDOI
TL;DR: The mechanisms of suppression of different pro-inflammatory cells, such as eosinophils, mast cells and basophils and the development of allergen tolerance also directly or indirectly involves Treg cells, and the formation of non-inflammatory antibodies particularly IgG4 is induced by IL-10.
Abstract: Allergen-specific immunotherapy (allergen-SIT) is a potentially curative treatment approach in allergic diseases. It has been used for almost 100 years as a desensitizing therapy. The induction of peripheral T cell tolerance and promotion of the formation of regulatory T-cells are key mechanisms in allergen-SIT. Both FOXP3+CD4+CD25+ regulatory T (Treg) cells and inducible IL-10- and TGF-β-producing type 1 Treg (Tr1) cells may prevent the development of allergic diseases and play a role in successful allergen-SIT and healthy immune response via several mechanisms. The mechanisms of suppression of different pro-inflammatory cells, such as eosinophils, mast cells and basophils and the development of allergen tolerance also directly or indirectly involves Treg cells. Furthermore, the formation of non-inflammatory antibodies particularly IgG4 is induced by IL-10. Knowledge of these molecular basis is crucial in the understanding the regulation of immune responses and their possible therapeutic targets in allergic diseases.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that BCDT alleviates central nervous system autoimmunity through ablation of IL-6secreting pathogenic B cells, which is a major mechanism of B cell-driven pathogenesis in T cell-mediated autoimmune disease.
Abstract: B cells have paradoxical roles in autoimmunity, exerting both pathogenic and protective effects. Pathogenesis may be antibody independent, as B cell depletion therapy (BCDT) leads to amelioration of disease irrespective of autoantibody ablation. However, the mechanisms of pathogenesis are poorly understood. We demonstrate that BCDT alleviates central nervous system autoimmunity through ablation of IL-6–secreting pathogenic B cells. B cells from mice with experimental autoimmune encephalomyelitis (EAE) secreted elevated levels of IL-6 compared with B cells from naive controls, and mice with a B cell–specific IL-6 deficiency showed less severe disease than mice with wild-type B cells. Moreover, BCDT ameliorated EAE only in mice with IL-6–sufficient B cells. This mechanism of pathogenesis may also operate in multiple sclerosis (MS) because B cells from MS patients produced more IL-6 than B cells from healthy controls, and this abnormality was normalized with B cell reconstitution after Rituximab treatment. This suggests that BCDT improved disease progression, at least partly, by eliminating IL-6–producing B cells in MS patients. Taking these data together, we conclude that IL-6 secretion is a major mechanism of B cell–driven pathogenesis in T cell–mediated autoimmune disease such as EAE and MS.

Journal ArticleDOI
25 Apr 2012-Brain
TL;DR: Findings strongly support a central role for T cell-mediated neuronal cytotoxicity in encephalitides with antibodies against intracellular antigens in voltage-gated potassium channel-complex encephalitis.
Abstract: Classical paraneoplastic encephalitis syndromes with 'onconeural' antibodies directed to intracellular antigens, and the recently described paraneoplastic or non-paraneoplastic encephalitides and antibodies against both neural surface antigens (voltage-gated potassium channel-complexes, N-methyl-d-aspartate receptors) and intracellular antigens (glutamic acid decarboxylase-65), constitute an increasingly recognized group of immune-mediated brain diseases. Evidence for specific immune mechanisms, however, is scarce. Here, we report qualitative and quantitative immunopathology in brain tissue (biopsy or autopsy material) of 17 cases with encephalitis and antibodies to either intracellular (Hu, Ma2, glutamic acid decarboxylase) or surface antigenic targets (voltage-gated potassium channel-complex or N-methyl-d-aspartate receptors). We hypothesized that the encephalitides with antibodies against intracellular antigens (intracellular antigen-onconeural and intracellular antigen-glutamic acid decarboxylase groups) would show neurodegeneration mediated by T cell cytotoxicity and the encephalitides with antibodies against surface antigens would be antibody-mediated and would show less T cell involvement. We found a higher CD8/CD3 ratio and more frequent appositions of granzyme-B(+) cytotoxic T cells to neurons, with associated neuronal loss, in the intracellular antigen-onconeural group (anti-Hu and anti-Ma2 cases) compared to the patients with surface antigens (anti-N-methyl-d-aspartate receptors and anti-voltage-gated potassium channel complex cases). One of the glutamic acid decarboxylase antibody encephalitis cases (intracellular antigen-glutamic acid decarboxylase group) showed multiple appositions of GrB-positive T cells to neurons. Generally, however, the glutamic acid decarboxylase antibody cases showed less intense inflammation and also had relatively low CD8/CD3 ratios compared with the intracellular antigen-onconeural cases. Conversely, we found complement C9neo deposition on neurons associated with acute neuronal cell death in the surface antigen group only, specifically in the voltage-gated potassium channel-complex antibody patients. N-methyl-d-aspartate receptors-antibody cases showed no evidence of antibody and complement-mediated tissue injury and were distinguished from all other encephalitides by the absence of clear neuronal pathology and a low density of inflammatory cells. Although tissue samples varied in location and in the stage of disease, our findings strongly support a central role for T cell-mediated neuronal cytotoxicity in encephalitides with antibodies against intracellular antigens. In voltage-gated potassium channel-complex encephalitis, a subset of the surface antigen antibody encephalitides, an antibody- and complement-mediated immune response appears to be responsible for neuronal loss and cerebral atrophy; the apparent absence of these mechanisms in N-methyl-d-aspartate receptors antibody encephalitis is intriguing and requires further study.

Journal ArticleDOI
TL;DR: Results suggest obesity may impair the ability to mount a protective immune response to influenza virus, and PBMCs challenged ex vivo with vaccine strain virus demonstrated that obese individuals had decreased CD8+ T-cell activation and decreased expression of functional proteins compared with healthy weight individuals.
Abstract: Obesity is an independent risk factor for morbidity and mortality from pandemic influenza H1N1. Influenza is a significant public health threat, killing an estimated 250 000–500 000 people worldwide each year. More than one in ten of the world's adult population is obese and more than two-thirds of the US adult population is overweight or obese. No studies have compared humoral or cellular immune responses to influenza vaccination in healthy weight, overweight and obese populations despite clear public health importance. The study employed a convenience sample to determine the antibody response to the 2009–2010 inactivated trivalent influenza vaccine (TIV) in healthy weight, overweight and obese participants at 1 and 12 months post vaccination. In addition, activation of CD8+ T cells and expression of interferon-γ and granzyme B were measured in influenza-stimulated peripheral blood mononuclear cell (PBMC) cultures. Body mass index (BMI) correlated positively with higher initial fold increase in IgG antibodies detected by enzyme-linked immunosorbent assay to TIV, confirmed by HAI antibody in a subset study. However, 12 months post vaccination, higher BMI was associated with a greater decline in influenza antibody titers. PBMCs challenged ex vivo with vaccine strain virus, demonstrated that obese individuals had decreased CD8+ T-cell activation and decreased expression of functional proteins compared with healthy weight individuals. These results suggest obesity may impair the ability to mount a protective immune response to influenza virus.

Journal ArticleDOI
TL;DR: Despite rapid progress, randomised clinical trials to test new drugs will be challenging because of the small number of individuals with the disorder, and new drug candidates have emerged, such as aquaporumab (non-pathogenic antibody blocker of AQP4-IgG binding), sivelestat (neutrophil elastase inhibitor), and eculizumab(complement inhibitor).
Abstract: Summary Neuromyelitis optica is an inflammatory demyelinating disorder of the CNS. The discovery of circulating IgG1 antibodies against the astrocyte water channel protein aquaporin 4 (AQP4) and the evidence that AQP4-IgG is involved in the development of neuromyelitis optica revolutionised our understanding of the disease. However, important unanswered questions remain—for example, we do not know the cause of AQP4-IgG-negative disease, how astrocyte damage causes demyelination, the role of T cells, why peripheral AQP4-expressing organs are undamaged, and how circulating AQP4-IgG enters neuromyelitis optica lesions. New drug candidates have emerged, such as aquaporumab (non-pathogenic antibody blocker of AQP4-IgG binding), sivelestat (neutrophil elastase inhibitor), and eculizumab (complement inhibitor). Despite rapid progress, randomised clinical trials to test new drugs will be challenging because of the small number of individuals with the disorder.

Journal ArticleDOI
TL;DR: It is suggested that PGT121 can mediate sterilizing immunity at serum concentrations that are significantly lower than those observed in previous studies and that may be achievable through vaccination with the development of a suitable immunogen.
Abstract: Most animal studies using passive administration of HIV broadly neutralizing monoclonal antibodies (bnMAbs) have associated protection against high-dose mucosal viral challenge with relatively high serum concentrations of antibody. We recently identified several bnMAbs remarkable for their in vitro potency against HIV. Of these bnMAbs, PGT121 is one of the most broad and potent antibodies isolated to date and shows 10- to 100-fold higher neutralizing activity than previously characterized bnMAbs. To evaluate the protective potency of PGT121 in vivo, we performed a protection study in rhesus macaques. Animals were i.v. administered 5 mg/kg, 1 mg/kg, or 0.2 mg/kg PGT121 24 h before being vaginally challenged with a single high dose of chimeric simian-human immunodeficiency virus (SHIV)SF162P3. Sterilizing immunity was achieved in all animals administered 5 mg/kg and 1 mg/kg and three of five animals administered 0.2 mg/kg PGT121, with corresponding average antibody serum concentrations of 95 µg/mL, 15 µg/mL, and 1.8 µg/mL, respectively. The results suggest that a protective serum concentration for PGT121 is in the single-digit µg/mL for SHIVSF162P3, showing that PGT121 can mediate sterilizing immunity at serum concentrations that are significantly lower than those observed in previous studies and that may be achievable through vaccination with the development of a suitable immunogen.

Patent
21 Nov 2012
TL;DR: In this paper, anti-PD-L1 antibodies or antigen binding fragments thereof, nucleic acid encoding the same, therapeutic compositions thereof, and their use to enhance T-cell function to upregulate cell-mediated immune responses and for the treatment of T cell dysfunctional disorders, such as tumor immunity.
Abstract: The present application relates to anti-PD-L1 antibodies or antigen binding fragments thereof, nucleic acid encoding the same, therapeutic compositions thereof, and their use to enhance T-cell function to upregulate cell-mediated immune responses and for the treatment of T cell dysfunctional disorders, such as tumor immunity, for the treatment of and cancer.

Journal ArticleDOI
18 Oct 2012-Nature
TL;DR: Genetic signatures of RV144 vaccination in V2 complement the finding of an association between high V1/V2-binding antibodies and reduced risk of HIV-1 acquisition, and provide evidence that vaccine-induced V2 responses plausibly had a role in the partial protection conferred by the RV144 regimen.
Abstract: Genetic analysis of breakthrough infections in people vaccinated against HIV-1 show that vaccine efficacy increased by up to 80% against viruses carrying two mutations in Env V2, but also raises the possibility of population-level adaptation to the vaccine. A major clinical trial involving more than 16,000 volunteers, known as the RV144 trial, tested a combination of two vaccines (ALVAC-HIV and AIDSVAX B/E gp120) for its ability to prevent HIV infection, as well as for safety. The vaccine was 31% effective against HIV-1 infection, and antibodies against the HIV-1 envelope variable loop 1 and 2 (V1/V2) domain correlated inversely with infection risk. Rolland et al. present a genetic analysis of breakthrough infections in RV144 trial participants and identify signatures associated with vaccine-induced immune pressure, thereby gaining support for a causal relationship between vaccination and protection. Viral amino-acid changes at positions 169 and 181 in the second variable loop of the viral envelope are shown to be most associated with efficacy — and represent possible targets for future vaccines. The RV144 trial demonstrated 31% vaccine efficacy at preventing human immunodeficiency virus (HIV)-1 infection1. Antibodies against the HIV-1 envelope variable loops 1 and 2 (Env V1 and V2) correlated inversely with infection risk2. We proposed that vaccine-induced immune responses against V1/V2 would have a selective effect against, or sieve, HIV-1 breakthrough viruses. A total of 936 HIV-1 genome sequences from 44 vaccine and 66 placebo recipients were examined. We show that vaccine-induced immune responses were associated with two signatures in V2 at amino acid positions 169 and 181. Vaccine efficacy against viruses matching the vaccine at position 169 was 48% (confidence interval 18% to 66%; P = 0.0036), whereas vaccine efficacy against viruses mismatching the vaccine at position 181 was 78% (confidence interval 35% to 93%; P = 0.0028). Residue 169 is in a cationic glycosylated region recognized by broadly neutralizing and RV144-derived antibodies. The predicted distance between the two signature sites (21 ± 7 A) and their match/mismatch dichotomy indicate that multiple factors may be involved in the protection observed in RV144. Genetic signatures of RV144 vaccination in V2 complement the finding of an association between high V1/V2-binding antibodies and reduced risk of HIV-1 acquisition, and provide evidence that vaccine-induced V2 responses plausibly had a role in the partial protection conferred by the RV144 regimen.

Journal ArticleDOI
27 Sep 2012-Nature
TL;DR: In isolation and characterization of an antibody called C05, which neutralizes strains from multiple subtypes of influenza A virus, including H1, H2 and H3, it is shown that C05 recognizes conserved elements of the receptor-binding site on the haemagglutinin surface glycoprotein.
Abstract: Immune recognition of protein antigens relies on the combined interaction of multiple antibody loops, which provide a fairly large footprint and constrain the size and shape of protein surfaces that can be targeted. Single protein loops can mediate extremely high-affinity binding, but it is unclear whether such a mechanism is available to antibodies. Here we report the isolation and characterization of an antibody called C05, which neutralizes strains from multiple subtypes of influenza A virus, including H1, H2 and H3. X-ray and electron microscopy structures show that C05 recognizes conserved elements of the receptor-binding site on the haemagglutinin surface glycoprotein. Recognition of the haemagglutinin receptor-binding site is dominated by a single heavy-chain complementarity-determining region 3 loop, with minor contacts from heavy-chain complementarity-determining region 1, and is sufficient to achieve nanomolar binding with a minimal footprint. Thus, binding predominantly with a single loop can allow antibodies to target small, conserved functional sites on otherwise hypervariable antigens.

Journal ArticleDOI
TL;DR: A study was undertaken to describe the clinical spectrum, voltage‐gated potassium channel (VGKC) complex antibody specificities, and central nervous system localization of antibody binding in 29 patients diagnosed with Morvan syndrome.
Abstract: Objective: A study was undertaken to describe the clinical spectrum, voltage-gated potassium channel (VGKC) complex antibody specificities, and central nervous system localization of antibody binding in 29 patients diagnosed with Morvan syndrome (MoS). Methods: Clinical data were collected using questionnaires. Radioimmunoassay, cell-based assays, and mouse brain immunohistochemistry were used to characterize the serum antibodies. Results: Neuromyotonia (100%), neuropsychiatric features (insomnia 89.7%, confusion 65.5%, amnesia 55.6%, hallucinations 51.9%), dysautonomia (hyperhidrosis 86.2%, cardiovascular 48.3%), and neuropathic pain (62.1%) were the most common manifestations. A total of 93.1% of MoS patients were male. VGKC-complex antibodies were present in 23 of 29 (79%) MoS patients at referral; 24 of 27 available sera had CASPR2, LGI1, or both CASPR2 and LGI1 antibodies (3 also with contactin-2 antibodies). CASPR2 antibodies were generally higher titer than LGI1 antibodies. Tumors (41.4%), mainly thymomas, were associated with CASPR2 antibodies and a poor prognosis, whereas LGI1 antibodies were associated with serum hyponatremia. In brain tissue regions including the hypothalamus, raphe, and locus coeruleus, commercial antibodies to LGI1 bound to neuronal cell bodies including the antidiuretic hormone-secreting and orexin-secreting hypothalamic neurons, whereas CASPR2 commercial antibodies bound more often to the neuropil. MoS antibodies bound similarly, but there was evidence of additional antibodies in some sera that were not adsorbed by LGI1- or CASPR2-expressing cells and bound to mouse Caspr2−/− tissue. Interpretation: MoS is clinically distinct from other VGKC-complex antibody-associated conditions, and usually is associated with high-titer CASPR2 antibodies, often accompanied by lower-titer LGI1 antibodies. CASPR2 and LGI1 antibodies bind to multiple brain regions, which helps to explain the multifocal clinical features of this disease, but other antibodies are likely to play a role in some patients and need to be characterized in future studies. ANN NEUROL 2012;

Journal ArticleDOI
TL;DR: It is concluded that FoxP3+ T cells have heterogeneous properties that can be discerned by the use of additional markers and seem to depend on the tumor site, perhaps reflecting microenvironmental differences.
Abstract: CD8+ tumor-infiltrating lymphocytes (TIL) are associated with survival in a variety of cancers. A second subpopulation of TIL, defined by forkhead box protein P3 (FoxP3) expression, has been reported to inhibit tumor immunity, resulting in decreased patient survival. On the basis of this premise, several groups are attempting to deplete FoxP3+ T cells to enhance tumor immunity. However, recent studies have challenged this paradigm by showing that FoxP3+ T cells exhibit heterogeneous phenotypes and, in some cohorts, are associated with favorable prognosis. These discrepant results could arise from differences in study methodologies or the biologic properties of specific cancer types. Here, we conduct the first systematic review of the prognostic significance of FoxP3+ T cells across nonlymphoid cancers (58 studies from 16 cancers). We assessed antibody specificity, cell-scoring strategy, multivariate modeling, use of single compared with multiple markers, and tumor site. Two factors proved important. First, when FoxP3 was combined with one additional marker, double-positive T cells were generally associated with poor prognosis. Second, tumor site had a major influence. FoxP3+ T cells were associated with poor prognosis in hepatocellular cancer and generally good prognosis in colorectal cancer, whereas other cancer types were inconsistent or understudied. We conclude that FoxP3+ T cells have heterogeneous properties that can be discerned by the use of additional markers. Furthermore, the net biologic effects of FoxP3+ T cells seem to depend on the tumor site, perhaps reflecting microenvironmental differences. Thus, depletion of FoxP3+ T cells might enhance tumor immunity in some patient groups but be detrimental in others.

Journal ArticleDOI
TL;DR: It is shown that the numbers of Tim‐3+ tumor‐infiltrating cells were negatively associated with patient survival and the data suggest that this pathway could be an immunotherapeutic target in patients with HBV‐associated HCC.

Journal ArticleDOI
TL;DR: B-cell responses in 24 healthy adults immunized with the inactivated 2009 pandemic H1N1 vaccine in 2009 found a rapid, predominantly IgG-producing vaccine-specific plasmablast response, which indicates that antibodies capable of neutralizing most influenza subtypes might indeed be elicited by vaccination.
Abstract: We have previously shown that broadly neutralizing antibodies reactive to the conserved stem region of the influenza virus hemagglutinin (HA) were generated in people infected with the 2009 pandemic H1N1 strain. Such antibodies are rarely seen in humans following infection or vaccination with seasonal influenza virus strains. However, the important question remained whether the inactivated 2009 pandemic H1N1 vaccine, like the infection, could also induce these broadly neutralizing antibodies. To address this question, we analyzed B-cell responses in 24 healthy adults immunized with the pandemic vaccine in 2009. In all cases, we found a rapid, predominantly IgG-producing vaccine-specific plasmablast response. Strikingly, the majority (25 of 28) of HA-specific monoclonal antibodies generated from the vaccine-specific plasmablasts neutralized more than one influenza strain and exhibited high levels of somatic hypermutation, suggesting they were derived from recall of B-cell memory. Indeed, memory B cells that recognized the 2009 pandemic H1N1 HA were detectable before vaccination not only in this cohort but also in samples obtained before the emergence of the pandemic strain. Three antibodies demonstrated extremely broad cross-reactivity and were found to bind the HA stem. Furthermore, one stem-reactive antibody recognized not only H1 and H5, but also H3 influenza viruses. This exceptional cross-reactivity indicates that antibodies capable of neutralizing most influenza subtypes might indeed be elicited by vaccination. The challenge now is to improve upon this result and design influenza vaccines that can elicit these broadly cross-reactive antibodies at sufficiently high levels to provide heterosubtypic protection.

Journal ArticleDOI
27 Apr 2012-Science
TL;DR: Evidence is provided that the inhibitory co-receptor programmed cell death–1 (PD-1) regulates the gut microbiota through appropriate selection of IgA plasma cell repertoires, which is essential to maintain the symbiotic balance between gut bacterial communities and the host immune system.
Abstract: Immunoglobulin A (IgA) is essential to maintain the symbiotic balance between gut bacterial communities and the host immune system. Here we provide evidence that the inhibitory co-receptor programmed cell death-1 (PD-1) regulates the gut microbiota through appropriate selection of IgA plasma cell repertoires. PD-1 deficiency generates an excess number of T follicular helper (T(FH)) cells with altered phenotypes, which results in dysregulated selection of IgA precursor cells in the germinal center of Peyer's patches. Consequently, the IgAs produced in PD-1-deficient mice have reduced bacteria-binding capacity, which causes alterations of microbial communities in the gut. Thus, PD-1 plays a critical role in regulation of antibody diversification required for the maintenance of intact mucosal barrier.

Journal ArticleDOI
TL;DR: A role for IL-9 in tumor immunity and insight into potential therapeutic strategies is suggested and higher numbers of TH9 cells in normal human skin and blood compared to metastatic lesions of subjects with progressive stage IV melanoma are found.
Abstract: Interleukin-9 (IL-9) is a T cell cytokine that acts through a γC-family receptor on target cells and is associated with inflammation and allergy. We determined that T cells from mice deficient in the T helper type 17 (T(H)17) pathway genes encoding retinoid-related orphan receptor γ (ROR-γ) and IL-23 receptor (IL-23R) produced abundant IL-9, and we found substantial growth inhibition of B16F10 melanoma in these mice. IL-9-blocking antibodies reversed this tumor growth inhibition and enhanced tumor growth in wild-type (WT) mice. Il9r(-/-) mice showed accelerated tumor growth, and administration of recombinant IL-9 (rIL-9) to tumor-bearing WT and Rag1(-/-) mice inhibited melanoma as well as lung carcinoma growth. Adoptive transfer of tumor-antigen-specific T(H)9 cells into both WT and Rag1(-/-) mice suppressed melanoma growth; this effect was abrogated by treatment with neutralizing antibodies to IL-9. Exogenous rIL-9 inhibited tumor growth in Rag1(-/-) mice but not in mast-cell-deficient mice, suggesting that the targets of IL-9 in this setting include mast cells but not T or B cells. In addition, we found higher numbers of T(H)9 cells in normal human skin and blood compared to metastatic lesions of subjects with progressive stage IV melanoma. These results suggest a role for IL-9 in tumor immunity and offer insight into potential therapeutic strategies.

Journal ArticleDOI
TL;DR: The polyclonality and low mutation frequency of these VH1 antibodies reveal fundamental differences in the regulation and maturation of these ADCC-mediating responses compared to VH2 bNAbs, which recently described for CD4-binding site broadly neutralizing antibodies.
Abstract: The ALVAC-HIV/AIDSVAX-B/E RV144 vaccine trial showed an estimated efficacy of 31%. RV144 secondary immune correlate analysis demonstrated that the combination of low plasma anti-HIV-1 Env IgA antibodies and high levels of antibody-dependent cellular cytotoxicity (ADCC) inversely correlate with infection risk. One hypothesis is that the observed protection in RV144 is partially due to ADCC-mediating antibodies. We found that the majority (73 to 90%) of a representative group of vaccinees displayed plasma ADCC activity, usually (96.2%) blocked by competition with the C1 region-specific A32 Fab fragment. Using memory B-cell cultures and antigen-specific B-cell sorting, we isolated 23 ADCC-mediating nonclonally related antibodies from 6 vaccine recipients. These antibodies targeted A32-blockable conformational epitopes (n = 19), a non-A32-blockable conformational epitope (n = 1), and the gp120 Env variable loops (n = 3). Fourteen antibodies mediated cross-clade target cell killing. ADCC-mediating antibodies displayed modest levels of V-heavy (VH) chain somatic mutation (0.5 to 1.5%) and also displayed a disproportionate usage of VH1 family genes (74%), a phenomenon recently described for CD4-binding site broadly neutralizing antibodies (bNAbs). Maximal ADCC activity of VH1 antibodies correlated with mutation frequency. The polyclonality and low mutation frequency of these VH1 antibodies reveal fundamental differences in the regulation and maturation of these ADCC-mediating responses compared to VH1 bNAbs.

Journal ArticleDOI
TL;DR: Results imply that blocking the PD-1 pathway can increase IFN-γ at the tumor site, thereby increasing chemokine-dependent trafficking of immune cells into malignant disease sites.
Abstract: Adoptive cell transfer (ACT) is considered a promising modality for cancer treatment, but despite ongoing improvements, many patients do not experience clinical benefits. The tumor microenvironment is an important limiting factor in immunotherapy that has not been addressed fully in ACT treatments. In this study, we report that upregualtion of the immunosuppressive receptor programmed cell death-1 (PD-1) expressed on transferred T cells at the tumor site, in a murine model of ACT, compared with its expression on transferred T cells present in the peripheral blood and spleen. As PD-1 can attenuate T-cell-mediated antitumor responses, we tested whether its blockade with an anti-PD-1 antibody could enhance the antitumor activity of ACT in this model. Cotreatment with both agents increased the number of transferred T cells at the tumor site and also enhanced tumor regressions, compared with treatments with either agent alone. While anti-PD-1 did not reduce the number of immunosuppressive regulatory T cells and myeloid-derived suppressor cells present in tumor-bearing mice, we found that it increased expression of IFN-γ and CXCL10 at the tumor site. Bone marrow-transplant experiments using IFN-γR-/- mice implicated IFN-γ as a crucial nexus for controlling PD-1-mediated tumor infiltration by T cells. Taken together, our results imply that blocking the PD-1 pathway can increase IFN-γ at the tumor site, thereby increasing chemokine-dependent trafficking of immune cells into malignant disease sites.

Journal ArticleDOI
Sabine Oertelt-Prigione1
TL;DR: The following review summarizes the present knowledge on sex differences in the immune response, detailing the hormonal and genetic effects that have been proposed as explanatory mechanisms.

Journal Article
TL;DR: An overview of the history of antibody identification of tumor surface antigens, antigenic targets suitable for antibody-based therapy, antibody mechanisms of action, and recent successes of antibodies in the clinic is provided.
Abstract: Monoclonal antibody-based treatment of cancer has been established as one of the most successful therapeutic strategies for both hematologic malignancies and solid tumors in the last 20 years. The initial combining of serological techniques for cancer cell surface antigen discovery with hybridoma technology led to a series of landmark clinical trials that paved the way for new generation antibodies and subsequent clinical success. Optimization of anti-tumor immune responses through Fc modifications has also made a major contribution to clinical efficacy. The modulation of immune system interplay with tumor cells through targeting of T cell receptors has emerged as a powerful new therapeutic strategy for tumor therapy and to enhance cancer vaccine efficacy. This commentary will provide an overview of the history of antibody identification of tumor surface antigens, antigenic targets suitable for antibody-based therapy, antibody mechanisms of action, and recent successes of antibodies in the clinic.

Journal ArticleDOI
TL;DR: In this article, the p40 antibody was compared to p63 in a series of 470 tumors from the archives of Memorial Sloan-Kettering Cancer Center and The Johns Hopkins Hospital, which included lung squamous cell carcinomas, adenocarcinomas, and large cell lymphomas.