scispace - formally typeset
Search or ask a question

Showing papers on "Cell culture published in 2015"


Journal ArticleDOI
TL;DR: A mechanism where host-microbe interactions augment barrier function in the distal gut is highlighted, where the influences of butyrate are lost in cells lacking HIF, thus linkingbutyrate metabolism to stabilized HIF and barrier function.

1,039 citations


Journal ArticleDOI
TL;DR: 3D cell culture models have proven to be more physiologically relevant and showed improvements in several studies of biological mechanisms like: cell number monitoring, viability, morphology, proliferation, differentiation, response to stimuli, migration and invasion of tumor cells into surrounding tissues.
Abstract: Cell culture is an important tool for biological research. Two-dimensional cell culture has been used for some time now, but growing cells in flat layers on plastic surfaces does not accurately model the in vivo state. As compared to the two-dimensional case, the three-dimensional (3D) cell culture allows biological cells to grow or interact with their surroundings in all three dimensions thanks to an artificial environment. Cells grown in a 3D model have proven to be more physiologically relevant and showed improvements in several studies of biological mechanisms like: cell number monitoring, viability, morphology, proliferation, differentiation, response to stimuli, migration and invasion of tumor cells into surrounding tissues, angiogenesis stimulation and immune system evasion, drug metabolism, gene expression and protein synthesis, general cell function and in vivo relevance. 3D culture models succeed thanks to technological advances, including materials science, cell biology and bioreactor design.

685 citations


Journal ArticleDOI
TL;DR: It is demonstrated that GSCs secrete periostin (POSTN) to recruit TAMs and found that TAMs in GBMs are not brain-resident microglia, but mainly monocyte-derived macrophages from peripheral blood.
Abstract: Bao and colleagues report that glioblastoma cancer stem cells produce periostin, which in turn recruits tumour-associated macrophages to the tumour site to foster growth.

680 citations


Journal ArticleDOI
TL;DR: It is demonstrated that antibodies reactive with the T cell-specific T3 antigen were insufficient to result in the activation of Jurkat cells, determined by the secretion of IL 2, demonstrating a two-stimulus requirement for gene expression in human T cells.
Abstract: The human T cell leukemia Jurkat was used as a model to examine the requirements of T cell activation. These studies demonstrated that antibodies reactive with the T cell-specific T3 antigen were insufficient to result in the activation of Jurkat cells, determined by the secretion of IL 2. IL 2 production occurred only in the presence of a second stimulus, the phorbol ester PMA. With the use of an IL 2-specific cDNA probe, the appearance of IL 2 RNA, similarly, occurred only when cells were stimulated with both anti-T3 antibodies and PMA. These results demonstrate a two-stimulus requirement for gene expression in human T cells.

583 citations


Journal ArticleDOI
TL;DR: This work has identified a heterogeneous subset of low-density neutrophils (LDNs) that appear transiently in self-resolving inflammation but accumulate continuously with cancer progression, providing a mechanistic explanation to mitigate the controversy surrounding neutrophil function in cancer.

566 citations


Journal ArticleDOI
TL;DR: 3D- Cultured cells forming dense MCSs may be better than 2D-cultured cells in simulating important tumor characteristics in vivo, namely hypoxia, dormancy, anti-apoptotic features and their resulting drug resistance.
Abstract: It is becoming recognized that screening of oncology drugs on a platform using two-dimensionally (2D)-cultured cell lines is unable to precisely select clinically active drugs; therefore three-dimensional (3D)-culture systems are emerging and show potential for better simulating the in vivo tumor microenvironment. The purpose of this study was to reveal the differential effects of chemotherapeutic drugs between 2D- and 3D-cultures and to explore their underlying mechanisms. We evaluated differences between 2D- and 3D-cultured breast cancer cell lines by assessing drug sensitivity, oxygen status and expression of Ki-67 and caspases. Three cell lines (BT-549, BT-474 and T-47D) developed dense multicellular spheroids (MCSs) in 3D-culture, and showed greater resistance to paclitaxel and doxorubicin compared to the 2D-cultured cells. An additional three cell lines (MCF-7, HCC-1954, and MDA-MB‑231) developed only loose MCSs in 3D, and showed drug sensitivities similar to those found in the 2D-culture. Treatment with paclitaxel resulted in greater increases in cleaved-PARP expression in the 2D-culture compared with the 3D-culture, but only in cell lines forming dense 3D-MCSs, suggesting that MCS formation protected the cells from paclitaxel-induced apoptosis. Hypoxia was observed only in the dense 3D-MCSs. BT-549 had fewer cells positive for Ki-67 in 3D- than in 2D-culture, suggesting that the greater G0-dormant subpopulation was responsible for its drug resistance in the 3D-culture. BT-474 had a lower level of caspase-3 in the 3D- than in the 2D-culture, suggesting that the 3D-environment was anti-apoptotic. Finally, we compared staining for Ki-67 and caspases in the 2D- and 3D-primary‑cultured cells originating from a patient-derived xenograft (PDX), fresh PDX tumor, and the patient's original tumor; 2D-cultured cells showed greater proportions of Ki-67-positive and caspase-3-positive cells, in agreement with the view that 3D-primary culture better represents characteristics of tumors in vivo. In conclusion, 3D-cultured cells forming dense MCSs may be better than 2D-cultured cells in simulating important tumor characteristics in vivo, namely hypoxia, dormancy, anti-apoptotic features and their resulting drug resistance.

561 citations


Journal ArticleDOI
TL;DR: Conditions required for long-term 3-dimensional culture of human gastric stem cells are described and the technology can be applied to study the epithelial response to infection with Helicobacter pylori.

560 citations


Journal ArticleDOI
TL;DR: This paper showed that tumor cells without mitochondrial DNA (mtDNA) showed delayed tumor growth, and that tumor formation is associated with acquisition of mtDNA from host cells, leading to partial recovery of mitochondrial function in cells derived from primary tumors grown from cells without mtDNA and a shorter lag in tumor growth.

548 citations


Journal ArticleDOI
TL;DR: E engineered CAR-T cells to express HPSE and showed their improved capacity to degrade the ECM, which promoted tumor T cell infiltration and antitumor activity, and the use of this strategy may enhance the activity of CAR- T cells in individuals with stroma-rich solid tumors.
Abstract: Adoptive transfer of chimeric antigen receptor (CAR)-redirected T lymphocytes (CAR-T cells) has had less striking therapeutic effects in solid tumors than in lymphoid malignancies. Although active tumor-mediated immunosuppression may have a role in limiting the efficacy of CAR-T cells, functional changes in T lymphocytes after their ex vivo manipulation may also account for the reduced ability of cultured CAR-T cells to penetrate stroma-rich solid tumors compared with lymphoid tissues. We therefore studied the capacity of human in vitro-cultured CAR-T cells to degrade components of the extracellular matrix (ECM). In contrast to freshly isolated T lymphocytes, we found that in vitro-cultured T lymphocytes lack expression of the enzyme heparanase (HPSE), which degrades heparan sulfate proteoglycans, the main components of ECM. We found that HPSE mRNA is downregulated in in vitro-expanded T cells, which may be a consequence of p53 (officially known as TP53, encoding tumor protein 53) binding to the HPSE gene promoter. We therefore engineered CAR-T cells to express HPSE and showed their improved capacity to degrade the ECM, which promoted tumor T cell infiltration and antitumor activity. The use of this strategy may enhance the activity of CAR-T cells in individuals with stroma-rich solid tumors.

533 citations


Journal ArticleDOI
TL;DR: It is found that recombinant laminin-511 E8 fragments are useful matrices for maintaining hESCs and hiPSCs when used in combination with a completely xeno-free (Xf) medium, StemFit™, and results indicate thatHiPSCs can be generated and maintained under this novel Ff and Xf culture system.
Abstract: In order to apply human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) to regenerative medicine, the cells should be produced under restricted conditions conforming to GMP guidelines. Since the conventional culture system has some issues that need to be addressed to achieve this goal, we developed a novel culture system. We found that recombinant laminin-511 E8 fragments are useful matrices for maintaining hESCs and hiPSCs when used in combination with a completely xeno-free (Xf) medium, StemFit™. Using this system, hESCs and hiPSCs can be easily and stably passaged by dissociating the cells into single cells for long periods, without any karyotype abnormalities. Human iPSCs could be generated under feeder-free (Ff) and Xf culture systems from human primary fibroblasts and blood cells, and they possessed differentiation abilities. These results indicate that hiPSCs can be generated and maintained under this novel Ff and Xf culture system.

499 citations


Journal ArticleDOI
TL;DR: The effects of the strongly interacting pair of Cdr1as/miR-7 on insulin secretion, which may become a new target for improving β cell function in diabetes, are revealed.
Abstract: Among the identified thousands of circular RNAs (circRNA) in humans and animals, Cdr1as (also known as CiRS-7) was recently demonstrated to act as a powerful miR-7 sponge/inhibitor in developing midbrain of zebrafish, suggesting a novel mechanism for regulating microRNA functions. MiR-7 is abundantly expressed in islet cells, but overexpressing miR-7 in transgenic mouse β cells causes diabetes. Therefore, we infer that Cdr1as expression may inhibit miR-7 function in islet cells, which in turn improves insulin secretion. Here, we show the first characterization of Cdr1as expression in islet cells, which was upregulated by long-term forskolin and PMA stimulation, but not high glucose, indicating the involvement of cAMP and PKC pathways. Remarkably, both insulin content and secretion were significantly increased by overexpression of Cdr1as in islet cells. We further identified a new target Myrip in the Cdr1as/miR-7 pathway that regulates insulin granule secretion, and also another target Pax6 that enhances insulin transcription. Taken together, our findings revealed the effects of the strongly interacting pair of Cdr1as/miR-7 on insulin secretion, which may become a new target for improving β cell function in diabetes.

Journal ArticleDOI
TL;DR: The use of affinity-tuned scFvs offers a strategy to empower wider use of CAR T cells against validated targets widely overexpressed on solid tumors, including those considered undruggable by this approach.
Abstract: Target-mediated toxicity is a major limitation in the development of chimeric antigen T-cell receptors (CAR) for adoptive cell therapy of solid tumors. In this study, we developed a strategy to adjust the affinities of the scFv component of CAR to discriminate tumors overexpressing the target from normal tissues that express it at physiologic levels. A CAR-expressing T-cell panel was generated with target antigen affinities varying over three orders of magnitude. High-affinity cells recognized target expressed at any level, including at levels in normal cells that were undetectable by flow cytometry. Affinity-tuned cells exhibited robust antitumor efficacy similar to high-affinity cells, but spared normal cells expressing physiologic target levels. The use of affinity-tuned scFvs offers a strategy to empower wider use of CAR T cells against validated targets widely overexpressed on solid tumors, including those considered undruggable by this approach.

Journal ArticleDOI
TL;DR: Recent advances in the generation of pluripotent stem cell- and AdSC-derived organoids are discussed, highlighting their potential for enhancing the understanding of human development and how this new culture system allows disease modeling and gene repair for a personalized regenerative medicine approach.
Abstract: In vitro three-dimensional (3D) cultures are emerging as novel systems with which to study tissue development, organogenesis and stem cell behavior ex vivo. When grown in a 3D environment, embryonic stem cells (ESCs) self-organize into organoids and acquire the right tissue patterning to develop into several endoderm- and ectoderm-derived tissues, mimicking their in vivo counterparts. Tissue-resident adult stem cells (AdSCs) also form organoids when grown in 3D and can be propagated in vitro for long periods of time. In this Review, we discuss recent advances in the generation of pluripotent stem cell- and AdSC-derived organoids, highlighting their potential for enhancing our understanding of human development. We will also explore how this new culture system allows disease modeling and gene repair for a personalized regenerative medicine approach.

Journal ArticleDOI
01 Jun 2015-Gut
TL;DR: A large panel of human gastrointestinal epithelial cell lines from patient biopsies taken during routine upper and lower endoscopy procedures are created to facilitate the study of interindividual, functional studies of human intestinal epithelial cells, including host–microbial interactions.
Abstract: Objective The technology for the growth of human intestinal epithelial cells is rapidly progressing. An exciting possibility is that this system could serve as a platform for individualised medicine and research. However, to achieve this goal, human epithelial culture must be enhanced so that biopsies from individuals can be used to reproducibly generate cell lines in a short time frame so that multiple, functional assays can be performed (ie, barrier function and host–microbial interactions). Design We created a large panel of human gastrointestinal epithelial cell lines (n=65) from patient biopsies taken during routine upper and lower endoscopy procedures. Proliferative stem/progenitor cells were rapidly expanded using a high concentration of conditioned media containing the factors critical for growth (Wnt3a, R-spondin and Noggin). A combination of lower conditioned media concentration and Notch inhibition was used to differentiate these cells for additional assays. Results We obtained epithelial lines from all accessible tissue sites within 2 weeks of culture. The intestinal cell lines were enriched for stem cell markers and rapidly grew as spheroids that required passage at 1:3–1:4 every 3 days. Under differentiation conditions, intestinal epithelial spheroids showed region-specific development of mature epithelial lineages. These cells formed functional, polarised monolayers covered by a secreted mucus layer when grown on Transwell membranes. Using two-dimensional culture, these cells also demonstrated novel adherence phenotypes with various strains of pathogenic Escherichia coli . Conclusions This culture system will facilitate the study of interindividual, functional studies of human intestinal epithelial cells, including host–microbial interactions.

Journal ArticleDOI
08 Oct 2015-Nature
TL;DR: This work identifies the host transmembrane protein SERINC5, and to a lesser extent SERINC3, as a potent inhibitor of HIV-1 particle infectivity that is counteracted by Nef.
Abstract: HIV-1 Nef, a protein important for the development of AIDS, has well-characterized effects on host membrane trafficking and receptor downregulation. By an unidentified mechanism, Nef increases the intrinsic infectivity of HIV-1 virions in a host-cell-dependent manner. Here we identify the host transmembrane protein SERINC5, and to a lesser extent SERINC3, as a potent inhibitor of HIV-1 particle infectivity that is counteracted by Nef. SERINC5 localizes to the plasma membrane, where it is efficiently incorporated into budding HIV-1 virions and impairs subsequent virion penetration of susceptible target cells. Nef redirects SERINC5 to a Rab7-positive endosomal compartment and thereby excludes it from HIV-1 particles. The ability to counteract SERINC5 was conserved in Nef encoded by diverse primate immunodeficiency viruses, as well as in the structurally unrelated glycosylated Gag from murine leukaemia virus. These examples of functional conservation and convergent evolution emphasize the fundamental importance of SERINC5 as a potent anti-retroviral factor.

Journal ArticleDOI
20 Apr 2015-PLOS ONE
TL;DR: In this paper, the authors applied the Cell Surface Capture (CSC) technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA) providing cellular surfaceome snapshots at high resolution.
Abstract: Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome) of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC) technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA) providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa). The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments.

Journal ArticleDOI
TL;DR: This review summarizes the historical development of organotypic brain slices focusing on the membrane technology, methodological aspects regarding culturing procedures, age of donors or media, and whether the cholinergic neurons serve as a model of neurodegeneration in Alzheimer’s disease and how the vascular network can be studied.

Journal ArticleDOI
TL;DR: It is elucidated that hAJ activates the mTOR pathway in cancer cells, which drives the progression from single cells to micrometastases and provides potential therapeutic targets to block progression toward osteolytic metastases.

Journal ArticleDOI
16 Apr 2015-Nature
TL;DR: A key role is identified for serine and glycine metabolism in the survival of brain cancer cells within the ischaemic zones of gliomas and SHMT2 activity limits that of pyruvate kinase and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumour regions.
Abstract: Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumour microenvironment. Here we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischaemic zones of gliomas. In human glioblastoma multiforme, mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumour regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumour environment, but also renders these cells sensitive to glycine cleavage system inhibition.

Journal ArticleDOI
01 Jul 2015-eLife
TL;DR: It is suggested that extracellular miRNAs can function in target cells and uncover a potential new mode of action for mutant KRAS in CRC.
Abstract: Mutant KRAS colorectal cancer (CRC) cells release protein-laden exosomes that can alter the tumor microenvironment. To test whether exosomal RNAs also contribute to changes in gene expression in recipient cells, and whether mutant KRAS might regulate the composition of secreted microRNAs (miRNAs), we compared small RNAs of cells and matched exosomes from isogenic CRC cell lines differing only in KRAS status. We show that exosomal profiles are distinct from cellular profiles, and mutant exosomes cluster separately from wild-type KRAS exosomes. miR-10b was selectively increased in wild-type exosomes, while miR-100 was increased in mutant exosomes. Neutral sphingomyelinase inhibition caused accumulation of miR-100 only in mutant cells, suggesting KRAS-dependent miRNA export. In Transwell co-culture experiments, mutant donor cells conferred miR-100-mediated target repression in wild-type-recipient cells. These findings suggest that extracellular miRNAs can function in target cells and uncover a potential new mode of action for mutant KRAS in CRC. DOI: http://dx.doi.org/10.7554/eLife.07197.001

Journal ArticleDOI
TL;DR: Comparison of embryonic stem cells, somatic cells, and senescent cells shows a unidirectional loss in local chromatin connectivity, suggesting that senescence is an endpoint of the continuous nuclear remodelling process during differentiation.

Journal ArticleDOI
TL;DR: Evidence is provided that PCP signaling can act in a context dependent manner to promote breast cancer progression and is expressed highest in 21MT-1 cells (invasive mammary carcinoma) and lowest in 21PT and 21NT cells.
Abstract: Planar cell polarity (PCP) signaling has been shown in different studies to either promote or inhibit the malignancy of breast cancer. Using the 21T cell lines, which were derived from an individual patient and represent distinct stages of progression, we show that the prototypical PCP ligand, WNT5A, is expressed highest in 21MT-1 cells (invasive mammary carcinoma) and lowest in 21PT (atypical ductal hyperplasia) and 21NT (ductal carcinoma in situ) cells. Overexpression of WNT5A decreased spherical colony formation and increased invasion and in vivo extravasation only in 21NT cells; whereas overexpression increased migration of both 21PT and 21NT cells. WNT5A overexpression also increased RHOA expression of both cell lines and subsequent RHOA knockdown blocked WNT5A-induced migration, but only partially blocked WNT5A-induced invasion of 21NT cells. PCP can signal through VANGL1 to modulate AP-1 target genes (e.g. MMP3) and induce invasion. VANGL1 knockdown inhibited WNT5A-induced invasion of 21NT cells, but had no effect on WNT5A-induced migration of either 21PT or 21NT cells. WNT5A-induced MMP3 expression was seen only in 21NT cells, an effect that was VANGL1 dependent, but independent of AP-1. We thus provide evidence that PCP signaling can act in a context dependent manner to promote breast cancer progression.

Journal ArticleDOI
TL;DR: It is demonstrated that this bioprinting technique enables automatized and reproducible creation of thinner and more homogeneous cell layers, which is required for an optimal air-blood tissue barrier.
Abstract: Intensive efforts in recent years to develop and commercialize in vitro alternatives in the field of risk assessment have yielded new promising two- and three dimensional (3D) cell culture models. Nevertheless, a realistic 3D in vitro alveolar model is not available yet. Here we report on the biofabrication of the human air-blood tissue barrier analogue composed of an endothelial cell, basement membrane and epithelial cell layer by using a bioprinting technology. In contrary to the manual method, we demonstrate that this technique enables automatized and reproducible creation of thinner and more homogeneous cell layers, which is required for an optimal air-blood tissue barrier. This bioprinting platform will offer an excellent tool to engineer an advanced 3D lung model for high-throughput screening for safety assessment and drug efficacy testing.

Journal ArticleDOI
TL;DR: The discovery of migracytosis, a cell migration-dependent mechanism for releasing cellular contents, and migrasomes, the vesicular structures that mediate migracyTosis are reported, and it is found that cytosolic contents can be transported into migratingasomes and released from the cell through migrasome.
Abstract: Cells communicate with each other through secreting and releasing proteins and vesicles. Many cells can migrate. In this study, we report the discovery of migracytosis, a cell migration-dependent mechanism for releasing cellular contents, and migrasomes, the vesicular structures that mediate migracytosis. As migrating cells move, they leave long tubular strands, called retraction fibers, behind them. Large vesicles, which contain numerous smaller vesicles, grow on the tips and intersections of retraction fibers. These fibers, which connect the vesicles with the main cell body, eventually break, and the vesicles are released into the extracellular space or directly taken up by surrounding cells. Since the formation of these vesicles is migration-dependent, we named them “migrasomes”. We also found that cytosolic contents can be transported into migrasomes and released from the cell through migrasomes. We named this migration-dependent release mechanism “migracytosis”.

Journal ArticleDOI
TL;DR: It is shown that Hopx becomes restricted to Type I cells during development and, unexpectedly, lineage-labeled Hopx+ cells both proliferate and generate Type II cells during adult alveolar regrowth following partial pneumonectomy.
Abstract: The plasticity of differentiated cells in adult tissues undergoing repair is an area of intense research. Pulmonary alveolar type II cells produce surfactant and function as progenitors in the adult, demonstrating both self-renewal and differentiation into gas exchanging type I cells. In vivo, type I cells are thought to be terminally differentiated and their ability to give rise to alternate lineages has not been reported. Here we show that Hopx becomes restricted to type I cells during development. However, unexpectedly, lineage-labelled Hopx(+) cells both proliferate and generate type II cells during adult alveolar regrowth following partial pneumonectomy. In clonal 3D culture, single Hopx(+) type I cells generate organoids composed of type I and type II cells, a process modulated by TGFβ signalling. These findings demonstrate unanticipated plasticity of type I cells and a bidirectional lineage relationship between distinct differentiated alveolar epithelial cell types in vivo and in single-cell culture.

Journal ArticleDOI
TL;DR: It is demonstrated that endogenous annexin A1 is released as a component of extracellular vesicles derived from intestinal epithelial cells, and these ANXA1-containing EVs activate wound repair circuits, suggesting that local delivery of proresolving peptides encapsulated within nanoparticles may represent a potential therapeutic strategy for clinical situations characterized by chronic mucosal injury, such as is seen in patients with IBD.
Abstract: Epithelial restitution is an essential process that is required to repair barrier function at mucosal surfaces following injury. Prolonged breaches in epithelial barrier function result in inflammation and further damage; therefore, a better understanding of the epithelial restitution process has potential for improving the development of therapeutics. In this work, we demonstrate that endogenous annexin A1 (ANXA1) is released as a component of extracellular vesicles (EVs) derived from intestinal epithelial cells, and these ANXA1-containing EVs activate wound repair circuits. Compared with healthy controls, patients with active inflammatory bowel disease had elevated levels of secreted ANXA1-containing EVs in sera, indicating that ANXA1-containing EVs are systemically distributed in response to the inflammatory process and could potentially serve as a biomarker of intestinal mucosal inflammation. Local intestinal delivery of an exogenous ANXA1 mimetic peptide (Ac2-26) encapsulated within targeted polymeric nanoparticles (Ac2-26 Col IV NPs) accelerated healing of murine colonic wounds after biopsy-induced injury. Moreover, one-time systemic administration of Ac2-26 Col IV NPs accelerated recovery following experimentally induced colitis. Together, our results suggest that local delivery of proresolving peptides encapsulated within nanoparticles may represent a potential therapeutic strategy for clinical situations characterized by chronic mucosal injury, such as is seen in patients with IBD.

Journal ArticleDOI
TL;DR: The first to indicate that exosome subpopulations are shared among cell types, suggesting distributed exosomes functionality is indicated, and the major sources of spectral variation were in cholesterol content, relative expression of phospholipids to cholesterol, and surface protein expression.
Abstract: Current analysis of exosomes focuses primarily on bulk analysis, where exosome-to-exosome variability cannot be assessed. In this study, we used Raman spectroscopy to study the chemical composition of single exosomes. We measured spectra of individual exosomes from 8 cell lines. Cell-line-averaged spectra varied considerably, reflecting the variation in total exosomal protein, lipid, genetic, and cytosolic content. Unexpectedly, single exosomes isolated from the same cell type also exhibited high spectral variability. Subsequent spectral analysis revealed clustering of single exosomes into 4 distinct groups that were not cell-line specific. Each group contained exosomes from multiple cell lines, and most cell lines had exosomes in multiple groups. The differences between these groups are related to chemical differences primarily due to differing membrane composition. Through a principal components analysis, we identified that the major sources of spectral variation among the exosomes were in cholesterol content, relative expression of phospholipids to cholesterol, and surface protein expression. For example, exosomes derived from cancerous versus non-cancerous cell lines can be largely separated based on their relative expression of cholesterol and phospholipids. We are the first to indicate that exosome subpopulations are shared among cell types, suggesting distributed exosome functionality. The origins of these differences are likely related to the specific role of extracellular vesicle subpopulations in both normal cell function and carcinogenesis, and they may provide diagnostic potential at the single exosome level.

Journal ArticleDOI
TL;DR: It is shown that autophagy modulation regulates the migration and invasion capabilities of glioblastoma (GBM) cells, and that SNAIL and SLUG, two master regulators of the epithelial–mesenchymal transition (EMT process), were down‐regulated upon Autophagy stimulation and, as a consequence, a transcriptional and translational up‐regulation of N‐ and R‐cadherins was found.

Journal ArticleDOI
TL;DR: In this paper, a panel of 151 colorectal cancer cell lines with respect to genetic mutations, expression profiles and drug sensitivity were characterized to identify new therapeutic targets, and the results were used to develop a model system that reflect the genomic heterogeneity of human cancers.
Abstract: Precision oncology relies on model systems that reflect the genomic heterogeneity of human cancers. Here the authors characterize a panel of 151 colorectal cancer cell lines with respect to genetic mutations, expression profiles and drug sensitivity to identify new therapeutic targets.

Journal ArticleDOI
15 Sep 2015-Gene
TL;DR: In this paper, the authors discussed issues caution against misinterpretations and pitfalls during the different experimental manipulations with 293 cells and discussed the potential to propagate highly neurotropic viruses, inducible synaptogenesis, functionality of the endogenous neuron-specific voltage-gated channels, and response to the diverse agonists implicated in neuronal signaling.