scispace - formally typeset
Search or ask a question
Institution

Paul Sabatier University

EducationToulouse, France
About: Paul Sabatier University is a education organization based out in Toulouse, France. It is known for research contribution in the topics: Population & Catalysis. The organization has 15431 authors who have published 23386 publications receiving 858364 citations.


Papers
More filters
Journal ArticleDOI
23 Jan 2015-Science
TL;DR: The direct in situ measurement of the D/H ratio in the Jupiter family comet 67P/Churyumov-Gerasimenko by the ROSINA mass spectrometer aboard the European Space Agency's Rosetta spacecraft is found to be (5.3 ± 0.7) × 10−4—that is, approximately three times the terrestrial value.
Abstract: The provenance of water and organic compounds on Earth and other terrestrial planets has been discussed for a long time without reaching a consensus. One of the best means to distinguish between different scenarios is by determining the deuterium-to-hydrogen (D/H) ratios in the reservoirs for comets and Earth’s oceans. Here, we report the direct in situ measurement of the D/H ratio in the Jupiter family comet 67P/Churyumov-Gerasimenko by the ROSINA mass spectrometer aboard the European Space Agency’s Rosetta spacecraft, which is found to be (5.3 ± 0.7) × 10−4—that is, approximately three times the terrestrial value. Previous cometary measurements and our new finding suggest a wide range of D/H ratios in the water within Jupiter family objects and preclude the idea that this reservoir is solely composed of Earth ocean–like water.

443 citations

Book ChapterDOI
01 Jan 1997
TL;DR: The low-field magnetic fabric measurement (AMS) as mentioned in this paper is a low-cost, quick and easy technique that gives a quantitative description of the crystalline fabric and is now used systematically for structural mapping of granites.
Abstract: This paper develops the author’s and co-workers’ findings that well-organized crystalline fabrics are ubiquitous in granitic rocks. Traditional structural and microstructural measurements of foliation and lineation in granites, performed directly in the field, in the laboratory from macroscopic oriented samples, and applied to entire plutons, reveal that magmatic structures may be homogeneous over huge areas. Hence structural mapping of granitoid massifs is of great interest in the understanding of magma emplacement and deformation in the crust. The low-field magnetic fabric measurement (AMS), a low cost, quick and easy technique, gives a quantitative description of the crystalline fabric and is now used systematically for structural mapping of granites. The present state of the « art » on the magnetic fabrics in granites is reviewed, based on the distinction between the paramagnetic, or magnetite-free, and the ferromagnetic, or magnetite-bearing granites. Magnetic fabrics in granitic rocks are discussed in relation to their variability at various scales and their kinematic and rheological significance. Finally, the relationship between fabrics and modes of emplacement is discussed.

443 citations

Journal ArticleDOI
TL;DR: In this paper, the photoluminescence properties of silicon nanocrystals as a function of their size were investigated and a simple theoretical model was developed to describe the PL properties of the silicon nano-crystals.
Abstract: We present results on the photoluminescence (PL) properties of silicon nanocrystals as a function of their size. The nanocrystals are synthesized by laser pyrolysis of silane in a gas flow reactor and deposited at low energy on a substrate after a mechanical velocity and size selection. Both the photoluminescence spectroscopy and yield have been studied as well as the effect of aging of the samples in air. The measurements show that the PL of the silicon nanocrystallites follows the quantum confinement model very closely. The apparent PL yields are rather high (up to 18%). From evaluation of the size distribution obtained by atomic force microscopy it is concluded that the intrinsic PL yield of the nanocrystals can reach almost 100%. These results enabled us to develop a simple theoretical model to describe the PL of silicon nanocrystals. This model can also explain the changes of PL with aging of the sample, just by invoking a decrease of the size of the crystalline core as a result of oxidation.

442 citations

Iosif Lazaridis1, Iosif Lazaridis2, Nick Patterson1, Alissa Mittnik3, Gabriel Renaud4, Swapan Mallick2, Swapan Mallick1, Karola Kirsanow5, Peter H. Sudmant6, Joshua G. Schraiber6, Joshua G. Schraiber7, Sergi Castellano4, Mark Lipson8, Bonnie Berger1, Bonnie Berger8, Christos Economou9, Ruth Bollongino5, Qiaomei Fu4, Kirsten I. Bos3, Susanne Nordenfelt1, Susanne Nordenfelt2, Heng Li1, Heng Li2, Cesare de Filippo4, Kay Prüfer4, Susanna Sawyer4, Cosimo Posth3, Wolfgang Haak10, Fredrik Hallgren11, Elin Fornander11, Nadin Rohland1, Nadin Rohland2, Dominique Delsate12, Michael Francken3, Jean-Michel Guinet12, Joachim Wahl, George Ayodo, Hamza A. Babiker13, Hamza A. Babiker14, Graciela Bailliet, Elena Balanovska, Oleg Balanovsky, Ramiro Barrantes15, Gabriel Bedoya16, Haim Ben-Ami17, Judit Bene18, Fouad Berrada19, Claudio M. Bravi, Francesca Brisighelli20, George B.J. Busby21, Francesco Calì, Mikhail Churnosov22, David E. C. Cole23, Daniel Corach24, Larissa Damba, George van Driem25, Stanislav Dryomov26, Jean-Michel Dugoujon27, Sardana A. Fedorova28, Irene Gallego Romero29, Marina Gubina, Michael F. Hammer30, Brenna M. Henn31, Tor Hervig32, Ugur Hodoglugil33, Aashish R. Jha29, Sena Karachanak-Yankova34, Rita Khusainova35, Elza Khusnutdinova35, Rick A. Kittles30, Toomas Kivisild36, William Klitz7, Vaidutis Kučinskas37, Alena Kushniarevich38, Leila Laredj39, Sergey Litvinov38, Theologos Loukidis40, Theologos Loukidis41, Robert W. Mahley42, Béla Melegh18, Ene Metspalu43, Julio Molina, Joanna L. Mountain, Klemetti Näkkäläjärvi44, Desislava Nesheva34, Thomas B. Nyambo45, Ludmila P. Osipova, Jüri Parik43, Fedor Platonov28, Olga L. Posukh, Valentino Romano46, Francisco Rothhammer47, Francisco Rothhammer48, Igor Rudan14, Ruslan Ruizbakiev49, Hovhannes Sahakyan50, Hovhannes Sahakyan38, Antti Sajantila51, Antonio Salas52, Elena B. Starikovskaya26, Ayele Tarekegn, Draga Toncheva34, Shahlo Turdikulova49, Ingrida Uktveryte37, Olga Utevska53, René Vasquez54, Mercedes Villena54, Mikhail Voevoda55, Cheryl A. Winkler56, Levon Yepiskoposyan50, Pierre Zalloua57, Pierre Zalloua2, Tatijana Zemunik58, Alan Cooper10, Cristian Capelli21, Mark G. Thomas41, Andres Ruiz-Linares41, Sarah A. Tishkoff59, Lalji Singh60, Kumarasamy Thangaraj61, Richard Villems43, Richard Villems38, Richard Villems62, David Comas63, Rem I. Sukernik26, Mait Metspalu38, Matthias Meyer4, Evan E. Eichler6, Joachim Burger5, Montgomery Slatkin7, Svante Pääbo4, Janet Kelso4, David Reich64, David Reich2, David Reich1, Johannes Krause4, Johannes Krause3 
Broad Institute1, Harvard University2, University of Tübingen3, Max Planck Society4, University of Mainz5, University of Washington6, University of California, Berkeley7, Massachusetts Institute of Technology8, Stockholm University9, University of Adelaide10, The Heritage Foundation11, National Museum of Natural History12, Sultan Qaboos University13, University of Edinburgh14, University of Costa Rica15, University of Antioquia16, Rambam Health Care Campus17, University of Pécs18, Al Akhawayn University19, Catholic University of the Sacred Heart20, University of Oxford21, Belgorod State University22, University of Toronto23, University of Buenos Aires24, University of Bern25, Russian Academy of Sciences26, Paul Sabatier University27, North-Eastern Federal University28, University of Chicago29, University of Arizona30, Stony Brook University31, University of Bergen32, Illumina33, Sofia Medical University34, Bashkir State University35, University of Cambridge36, Vilnius University37, Estonian Biocentre38, University of Strasbourg39, Amgen40, University College London41, Gladstone Institutes42, University of Tartu43, University of Oulu44, Muhimbili University of Health and Allied Sciences45, University of Palermo46, University of Chile47, University of Tarapacá48, Academy of Sciences of Uzbekistan49, Armenian National Academy of Sciences50, University of North Texas51, University of Santiago de Compostela52, University of Kharkiv53, Higher University of San Andrés54, Novosibirsk State University55, Leidos56, Lebanese American University57, University of Split58, University of Pennsylvania59, Banaras Hindu University60, Centre for Cellular and Molecular Biology61, Estonian Academy of Sciences62, Pompeu Fabra University63, Howard Hughes Medical Institute64
01 Sep 2014
TL;DR: The authors showed that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunters-gatherer related ancestry.
Abstract: We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.

442 citations

Journal ArticleDOI
TL;DR: The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn's magnetosphere and its interactions with the solar wind, Saturn's atmosphere, Titan, and the icy satellites as mentioned in this paper.
Abstract: The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager 1 spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling” and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge-energy-mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ~ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5° full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (~0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E < 0.884 MeV in the forward direction (G ~ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ~ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-a measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ~60 RS every 2–3 h (every ~10 min from ~20 RS). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be <0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.

438 citations


Authors

Showing all 15486 results

NameH-indexPapersCitations
Yury Gogotsi171956144520
Tobin J. Marks1591621111604
L. Montier13840397094
Jean-Paul Kneib13880589287
Olivier Forni13754895819
J. Aumont13129995006
Julian I. Schroeder12031550323
Bruno Vellas118101170667
Christopher G. Goetz11665159510
Didier Dubois11374254741
Alain Dufresne11135845904
Henri Prade10891754583
Louis Bernatchez10656835682
Walter Wahli10536549372
Patrice D. Cani10037049523
Network Information
Related Institutions (5)
Pierre-and-Marie-Curie University
56.1K papers, 2.3M citations

97% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

97% related

University of Paris
174.1K papers, 5M citations

96% related

École Normale Supérieure
99.4K papers, 3M citations

94% related

National Research Council
76K papers, 2.4M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202332
202293
2021759
2020753
2019728
2018622