scispace - formally typeset
Search or ask a question

Showing papers by "University of Victoria published in 2015"


Journal ArticleDOI
TL;DR: The Virgo Consortium's EAGLE project as discussed by the authors is a suite of hydrodynamical simulations that follow the formation of galaxies and black holes in representative volumes, where thermal energy is injected into the gas, allowing winds to develop without predetermined speed or mass loading factors.
Abstract: We introduce the Virgo Consortium's EAGLE project, a suite of hydrodynamical simulations that follow the formation of galaxies and black holes in representative volumes. We discuss the limitations of such simulations in light of their finite resolution and poorly constrained subgrid physics, and how these affect their predictive power. One major improvement is our treatment of feedback from massive stars and AGN in which thermal energy is injected into the gas without the need to turn off cooling or hydrodynamical forces, allowing winds to develop without predetermined speed or mass loading factors. Because the feedback efficiencies cannot be predicted from first principles, we calibrate them to the z~0 galaxy stellar mass function and the amplitude of the galaxy-central black hole mass relation, also taking galaxy sizes into account. The observed galaxy mass function is reproduced to ≲0.2 dex over the full mass range, 108

2,828 citations


Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +5117 moreInstitutions (314)
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Abstract: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is mH=125.09±0.21 (stat)±0.11 (syst) GeV.

1,567 citations


Journal ArticleDOI
TL;DR: In those patients at high risk for the development of ONJ, including cancer patients receiving high‐dose BP or Dmab therapy, consideration should be given to withholding antiresorptive therapy following extensive oral surgery until the surgical site heals with mature mucosal coverage.
Abstract: This work provides a systematic review of the literature from January 2003 to April 2014 pertaining to the incidence, pathophysiology, diagnosis, and treatment of osteonecrosis of the jaw (ONJ), and offers recommendations for its management based on multidisciplinary international consensus. ONJ is associated with oncology-dose parenteral antiresorptive therapy of bisphosphonates (BP) and denosumab (Dmab). The incidence of ONJ is greatest in the oncology patient population (1% to 15%), where high doses of these medications are used at frequent intervals. In the osteoporosis patient population, the incidence of ONJ is estimated at 0.001% to 0.01%, marginally higher than the incidence in the general population (<0.001%). New insights into the pathophysiology of ONJ include antiresorptive effects of BPs and Dmab, effects of BPs on gamma delta T-cells and on monocyte and macrophage function, as well as the role of local bacterial infection, inflammation, and necrosis. Advances in imaging include the use of cone beam computerized tomography assessing cortical and cancellous architecture with lower radiation exposure, magnetic resonance imaging, bone scanning, and positron emission tomography, although plain films often suffice. Other risk factors for ONJ include glucocorticoid use, maxillary or mandibular bone surgery, poor oral hygiene, chronic inflammation, diabetes mellitus, ill-fitting dentures, as well as other drugs, including antiangiogenic agents. Prevention strategies for ONJ include elimination or stabilization of oral disease prior to initiation of antiresorptive agents, as well as maintenance of good oral hygiene. In those patients at high risk for the development of ONJ, including cancer patients receiving high-dose BP or Dmab therapy, consideration should be given to withholding antiresorptive therapy following extensive oral surgery until the surgical site heals with mature mucosal coverage. Management of ONJ is based on the stage of the disease, size of the lesions, and the presence of contributing drug therapy and comorbidity. Conservative therapy includes topical antibiotic oral rinses and systemic antibiotic therapy. Localized surgical debridement is indicated in advanced nonresponsive disease and has been successful. Early data have suggested enhanced osseous wound healing with teriparatide in those without contraindications for its use. Experimental therapy includes bone marrow stem cell intralesional transplantation, low-level laser therapy, local platelet-derived growth factor application, hyperbaric oxygen, and tissue grafting.

832 citations


Journal ArticleDOI
TL;DR: Evaluating the consistency of CT protocols and sampling designs, the extent to which CT surveys considered sampling error, and the linkages between analytical assumptions and species ecology call for more explicit consideration of underlying processes of animal abundance, movement and detection by cameras, including more thorough reporting of methodological details and assumptions.
Abstract: Summary Reliable assessment of animal populations is a long-standing challenge in wildlife ecology. Technological advances have led to widespread adoption of camera traps (CTs) to survey wildlife distribution, abundance and behaviour. As for any wildlife survey method, camera trapping must contend with sources of sampling error such as imperfect detection. Early applications focused on density estimation of naturally marked species, but there is growing interest in broad-scale CT surveys of unmarked populations and communities. Nevertheless, inferences based on detection indices are controversial, and the suitability of alternatives such as occupancy estimation is debatable. We reviewed 266 CT studies published between 2008 and 2013. We recorded study objectives and methodologies, evaluating the consistency of CT protocols and sampling designs, the extent to which CT surveys considered sampling error, and the linkages between analytical assumptions and species ecology. Nearly two-thirds of studies surveyed more than one species, and a majority used response variables that ignored imperfect detection (e.g. presence–absence, relative abundance). Many studies used opportunistic sampling and did not explicitly report details of sampling design and camera deployment that could affect conclusions. Most studies estimating density used capture–recapture methods on marked species, with spatially explicit methods becoming more prominent. Few studies estimated density for unmarked species, focusing instead on occupancy modelling or measures of relative abundance. While occupancy studies estimated detectability, most did not explicitly define key components of the modelling framework (e.g. a site) or discuss potential violations of model assumptions (e.g. site closure). Studies using relative abundance relied on assumptions of equal detectability, and most did not explicitly define expected relationships between measured responses and underlying ecological processes (e.g. animal abundance and movement). Synthesis and applications. The rapid adoption of camera traps represents an exciting transition in wildlife survey methodology. We remain optimistic about the technology's promise, but call for more explicit consideration of underlying processes of animal abundance, movement and detection by cameras, including more thorough reporting of methodological details and assumptions. Such transparency will facilitate efforts to evaluate and improve the reliability of camera trap surveys, ultimately leading to stronger inferences and helping to meet modern needs for effective ecological inquiry and biodiversity monitoring.

786 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the extent to which quantile mapping algorithms modify global climate model (GCM) trends in mean precipitation and precipitation extremes indices, and proposed a bias correction algorithm, quantile delta mapping (QDM), that explicitly preserves relative changes in precipitation quantiles.
Abstract: Quantile mapping bias correction algorithms are commonly used to correct systematic distributional biases in precipitation outputs from climate models. Although they are effective at removing historical biases relative to observations, it has been found that quantile mapping can artificially corrupt future model-projected trends. Previous studies on the modification of precipitation trends by quantile mapping have focused on mean quantities, with less attention paid to extremes. This article investigates the extent to which quantile mapping algorithms modify global climate model (GCM) trends in mean precipitation and precipitation extremes indices. First, a bias correction algorithm, quantile delta mapping (QDM), that explicitly preserves relative changes in precipitation quantiles is presented. QDM is compared on synthetic data with detrended quantile mapping (DQM), which is designed to preserve trends in the mean, and with standard quantile mapping (QM). Next, methods are applied to phase 5 of t...

669 citations


Book ChapterDOI
TL;DR: Boaventura de Sousa Santos as discussed by the authors is a sociologist at the School of Economics, University of Coimbra (Portugal) and Distinguished Legal Scholar at the University of Wisconsin-Madison Law School.
Abstract: Boaventura de Sousa Santos is Professor of Sociology at the School of Economics, University of Coimbra (Portugal) and Distinguished Legal Scholar at the University of Wisconsin-Madison Law School. He is Director of the Center for Social Studies of the University of Coimbra and Director of the Center of Documentation on the Revolution of 1974, at the same University. He has published widely on globalization, sociology of law and the state, epistemology, democracy, and human rights in Portuguese, Spanish, English, Italian, French and German.

668 citations


Journal ArticleDOI
TL;DR: This article made a distinction between qualitative and descriptive research in the field of second language teaching and learning, and made a comparison between the two types of research, focusing on what rather than how or why something has happened.
Abstract: Qualitative and descriptive research methods have been very common procedures for conducting research in many disciplines, including education, psychology, and social sciences. These types of research have also begun to be increasingly used in the field of second language teaching and learning. The interest in such methods, particularly in qualitative research, is motivated in part by the recognition that L2 teaching and learning is complex. To uncover this complexity, we need to not only examine how learning takes place in general or what factors affect it, but also provide more in-depth examination and understanding of individual learners and their behaviors and experiences. Qualitative and descriptive research is well suited to the study of L2 classroom teaching, where conducting tightly controlled experimental research is hardly possible, and even if controlled experimental research is conducted in such settings, the generalizability of its findings to real classroom contexts are questionable. Therefore, Language Teaching Research receives many manuscripts that report qualitative or descriptive research. The terms qualitative research and descriptive research are sometimes used interchangeably. However, a distinction can be made between the two. One fundamental characteristic of both types of research is that they involve naturalistic data. That is, they attempt to study language learning and teaching in their naturally occurring settings without any intervention or manipulation of variables. Nonetheless, these two types of research may differ in terms of their goal, degree of control, and the way the data are analyzed. The goal of descriptive research is to describe a phenomenon and its characteristics. This research is more concerned with what rather than how or why something has happened. Therefore, observation and survey tools are often used to gather data (Gall, Gall, & Borg, 2007). In such research, the data may be collected qualitatively, but it is often analyzed quantitatively, using frequencies, percentages, averages, or other statistical analyses to determine relationships. Qualitative research, however, is more holistic and often involves a rich collection of data from various sources to gain a deeper understanding of individual participants, including their opinions, perspectives, and attitudes. Qualitative research collects data qualitatively, and the method of analysis is 572747 LTR0010.1177/1362168815572747Language Teaching ResearchEditorial editorial2015

593 citations


Journal ArticleDOI
Bruce Macintosh1, Bruce Macintosh2, James R. Graham3, Travis Barman4, R. J. De Rosa3, Quinn Konopacky5, Mark S. Marley6, Christian Marois7, Christian Marois8, Eric L. Nielsen2, Laurent Pueyo9, Abhijith Rajan10, Julien Rameau11, Didier Saumon12, Jason J. Wang3, Jennifer Patience10, Mark Ammons1, Pauline Arriaga13, Étienne Artigau11, Steven V. W. Beckwith3, J. Brewster, Sebastian Bruzzone14, Joanna Bulger15, Joanna Bulger10, Ben Burningham6, Ben Burningham16, Adam Burrows17, Christine Chen9, Eugene Chiang3, Jeffrey Chilcote18, Rebekah I. Dawson3, Ruobing Dong3, René Doyon11, Z. H. Draper8, Gaspard Duchêne3, Gaspard Duchêne19, Thomas M. Esposito13, Daniel C. Fabrycky20, Michael P. Fitzgerald13, Katherine B. Follette2, J. J. Fortney21, B. L. Gerard8, S. Goodsell22, A. Z. Greenbaum9, P. Hibon, Sasha Hinkley23, Tara Cotten24, Li-Wei Hung13, Patrick Ingraham, M. Johnson-Groh8, Paul Kalas3, David Lafrenière11, James E. Larkin13, J. Lee24, Michael R. Line21, Douglas Long9, Jérôme Maire18, Franck Marchis, Brenda C. Matthews8, Brenda C. Matthews7, Claire E. Max21, Stanimir Metchev25, Stanimir Metchev14, Max Millar-Blanchaer18, Tushar Mittal3, Caroline V. Morley21, Katie M. Morzinski4, R. Murray-Clay26, Rebecca Oppenheimer27, Dave Palmer1, Rahul Patel25, Marshall D. Perrin9, Lisa Poyneer1, Roman R. Rafikov17, Fredrik T. Rantakyrö, Emily L. Rice27, Patricio Rojo28, Alex Rudy21, Jean-Baptiste Ruffio2, Maria Teresa Ruiz28, Naru Sadakuni29, Leslie Saddlemyer8, M. Salama3, Dmitry Savransky30, Adam C. Schneider31, Anand Sivaramakrishnan9, Inseok Song24, Rémi Soummer9, S. Thomas, Gautam Vasisht32, James K. Wallace32, Kimberly Ward-Duong10, Sloane J. Wiktorowicz21, Schuyler Wolff9, Barry Zuckerman13 
02 Oct 2015-Science
TL;DR: Using the Gemini Planet Imager, a Jupiter-like planet is discovered orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units and has a methane signature and is probably the smallest exoplanet that has been directly imaged.
Abstract: Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10(-6) and an effective temperature of 600 to 750 kelvin. For this age and luminosity, "hot-start" formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the "cold-start" core-accretion process that may have formed Jupiter.

575 citations


Journal ArticleDOI
TL;DR: The findings support the basic premise of hedonic theory as a positive change in the basic affective response during moderate intensity exercise was linked to future physical activity, but postexercise affect had a null relationship.
Abstract: Consistent with hedonic theories of behavior, the affective response to physical activity has been posited as an important determinant of future physical activity; yet, we are unaware of an overview of evidence regarding this relationship. The purpose of this study was to review the published literature regarding whether the affective response to physical activity relates to future physical activity behavior and key motivational constructs. A systematic review following PRISMA guidelines was undertaken. Twenty-four studies met the inclusion criteria. A positive change in the basic affective response during moderate intensity exercise was linked to future physical activity, but postexercise affect had a null relationship. Affective responses during and after exercise had a relatively negligible relationship with intention, mixed results for self-efficacy, and a reliable correlation with affective judgments about future physical activity. The findings support the basic premise of hedonic theory. Practical application studies with a focus on sustained behavioral interventions are warranted.

474 citations


Journal ArticleDOI
TL;DR: In this article, the authors analyzed circumpolar data from 37 Arctic and alpine sites in 9 countries, including 25 species, and ∼42,000 annual growth records from 1,821 individuals, and demonstrated that the sensitivity of shrub growth to climate was heterogeneous, with European sites showing greater summer temperature sensitivity than North American sites, and higher at sites with greater soil moisture and for taller shrubs (for example, alders and willows) growing at their northern or upper elevational range edges.
Abstract: Rapid climate warming has been linked to increasing shrub dominance in the Arctic tundra. Research now shows that climate–shrub growth relationships vary spatially and according to site characteristics such as soil moisture and shrub height. Rapid climate warming in the tundra biome has been linked to increasing shrub dominance1,2,3,4. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost2,5,6,7,8, yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting of multi-decadal time series of annual shrub growth provide an underused resource to explore climate–growth relationships. Here, we analyse circumpolar data from 37 Arctic and alpine sites in 9 countries, including 25 species, and ∼42,000 annual growth records from 1,821 individuals. Our analyses demonstrate that the sensitivity of shrub growth to climate was: (1) heterogeneous, with European sites showing greater summer temperature sensitivity than North American sites, and (2) higher at sites with greater soil moisture and for taller shrubs (for example, alders and willows) growing at their northern or upper elevational range edges. Across latitude, climate sensitivity of growth was greatest at the boundary between the Low and High Arctic, where permafrost is thawing4 and most of the global permafrost soil carbon pool is stored9. The observed variation in climate–shrub growth relationships should be incorporated into Earth system models to improve future projections of climate change impacts across the tundra biome.

471 citations


Journal ArticleDOI
07 May 2015-Nature
TL;DR: This work shows that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, and reveals the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean.
Abstract: Internal oceanic waves are subsurface gravity waves that can be enormous and travel thousands of kilometres before breaking but they are difficult to study; here observations of such waves in the South China Sea reveal their formation mechanism, extreme turbulence, relationship to the Kuroshio Current and energy budget. Internal waves are the underwater version of more familiar surface waves. They can be enormous and travel thousands of kilometres before breaking. The South China Sea is known to be home to the largest internal waves in the world's oceans, but their size, generation mechanisms and role in the regional energy budget are unknown. Matthew Alford and colleagues now present the results from the IWISE observational campaign and reveal that internal waves more than 200 metres high break in the South China Sea and create turbulence that is orders of magnitude larger than in the open ocean, and that wave formation is influenced by the Kuroshio current. These results now allow for a complete energy budget of the South China Sea, and for a more accurate incorporation of internal waves into climate models. Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis1, sediment and pollutant transport2 and acoustic transmission3; they also pose hazards for man-made structures in the ocean4. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking5, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects6,7. For over a decade, studies8,9,10,11 have targeted the South China Sea, where the oceans’ most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

Journal ArticleDOI
TL;DR: In this article, the results of the Herschel Gould Belt survey (HGBS) observations in an ~11 deg2 area of the Aquila molecular cloud complex at d ~ 260 pc, imaged with the SPIRE and PACS photometric cameras in parallel mode from 70 μm to 500 μm.
Abstract: We present and discuss the results of the Herschel Gould Belt survey (HGBS) observations in an ~11 deg2 area of the Aquila molecular cloud complex at d ~ 260 pc, imaged with the SPIRE and PACS photometric cameras in parallel mode from 70 μm to 500 μm. Using the multi-scale, multi-wavelength source extraction algorithm getsources, we identify a complete sample of starless dense cores and embedded (Class 0-I) protostars in this region, and analyze their global properties and spatial distributions. We find a total of 651 starless cores, ~60% ± 10% of which are gravitationally bound prestellar cores, and they will likely form stars inthe future. We also detect 58 protostellar cores. The core mass function (CMF) derived for the large population of prestellar cores is very similar in shape to the stellar initial mass function (IMF), confirming earlier findings on a much stronger statistical basis and supporting the view that there is a close physical link between the stellar IMF and the prestellar CMF. The global shift in mass scale observed between the CMF and the IMF is consistent with a typical star formation efficiency of ~40% at the level of an individual core. By comparing the numbers of starless cores in various density bins to the number of young stellar objects (YSOs), we estimate that the lifetime of prestellar cores is ~1 Myr, which is typically ~4 times longer than the core free-fall time, and that it decreases with average core density. We find a strong correlation between the spatial distribution of prestellar cores and the densest filaments observed in the Aquila complex. About 90% of the Herschel-identified prestellar cores are located above a background column density corresponding to AV ~ 7, and ~75% of them lie within filamentary structures with supercritical masses per unit length ≳16 M⊙/pc. These findings support a picture wherein the cores making up the peak of the CMF (and probably responsible for the base of the IMF) result primarily from the gravitational fragmentation of marginally supercritical filaments. Given that filaments appear to dominate the mass budget of dense gas at AV> 7, our findings also suggest that the physics of prestellar core formation within filaments is responsible for a characteristic “efficiency” for the star formation process in dense gas.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2815 moreInstitutions (169)
TL;DR: In this article, a search for new phenomena in final states with an energetic jet and large missing transverse momentum was performed using 20.3 fb(-1) of root s = 8 TeV data collected in 2012.
Abstract: Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb(-1) of root s = 8 TeV data collected in 2012 ...

Journal ArticleDOI
08 Jan 2015-Nature
TL;DR: Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet.
Abstract: Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan The influence of yeast mannan on the ecology of the human microbiota is unknown Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes Co-culturing studies showed that metabolism of yeast mannan by B thetaiotaomicron presents a 'selfish' model for the catabolism of this difficult to breakdown polysaccharide Genomic comparison with B thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet

Book
23 Sep 2015
TL;DR: The stability of aggregate-level preferences in longitudinal discrete choice experiments Towhidul Islam and Jordan J. Louviere show that best-worst analysis using delivered pizza and toothpaste examples is an alternative to ratings data.
Abstract: Preface Acknowledgments Theory and Methods: 1. Introduction and overview of the book 2. The BWS object case 3. The BWS profile case 4. The BWS multi-profile case 5. Basic models 6. Looking forward Applications - Case 1: 7. BWS object case application: attitudes towards end-of-life care Terry N. Flynn, Elisabeth Huynh and Charles Corke 8. How consumers choose wine: using best-worst scaling across countries Larry Lockshin and Eli Cohen 9. Best-worst scaling: an alternative to ratings data Geoffrey N. Soutar, Jillian C. Sweeney and Janet R. McColl-Kennedy Applications - Case 2: 10. When the ayes don't have it: supplementing an accept/reject DCE with a case 2 best-worst scaling task Richard T. Carson and Jordan J. Louviere 11. BWS profile case application: preferences for treatment in dentistry Emma McIntosh and Terry N. Flynn 12. BWS profile case application: preferences for quality of life in Australia Terry N. Flynn and Elisabeth Huynh Applications - Case 3: 13. The stability of aggregate-level preferences in longitudinal discrete choice experiments Towhidul Islam and Jordan J. Louviere 14. Case 3 best-worst analysis using delivered pizza and toothpaste examples Bart D. Frischknecht and Jordan J. Louviere 15. Using alternative-specific DCE designs and best and worst choices to model choices Jordan J. Louviere References Subject index Author index.

Journal ArticleDOI
TL;DR: In this article, the authors revisited the analysis of a sample of 50 clusters studied as part of the Canadian Cluster Comparison Project and found that the uncertainty in the determination of photometric redshifts is the largest source of systematic error for our mass estimates.
Abstract: Masses of clusters of galaxies from weak gravitational lensing analyses of ever larger samples are increasingly used as the reference to which baryonic scaling relations are compared. In this paper we revisit the analysis of a sample of 50 clusters studied as part of the Canadian Cluster Comparison Project. We examine the key sources of systematic error in cluster masses. We quantify the robustness of our shape measurements and calibrate our algorithm empirically using extensive image simulations. The source redshift distribution is revised using the latest state-of-the-art photometric redshift catalogues that include new deep near-infrared observations. None the less we find that the uncertainty in the determination of photometric redshifts is the largest source of systematic error for our mass estimates. We use our updated masses to determine b, the bias in the hydrostatic mass, for the clusters detected by Planck. Our results suggest 1 − b = 0.76 ± 0.05 (stat) ± 0.06 (syst), which does not resolve the tension with the measurements from the primary cosmic microwave background.

Journal ArticleDOI
08 May 2015-Science
TL;DR: The New York Declaration on Forests underscored restoration of degraded ecosystems as an auspicious solution to climate change and parties committed to restore a staggering 350 million hectares by 2030.
Abstract: At the September 2014 United Nations Climate Summit, governments rallied around an international agreement—the New York Declaration on Forests—that underscored restoration of degraded ecosystems as an auspicious solution to climate change. Ethiopia committed to restore more than one-sixth of its land. Uganda, the Democratic Republic of Congo, Guatemala, and Colombia pledged to restore huge areas within their borders. In total, parties committed to restore a staggering 350 million hectares by 2030.

Journal ArticleDOI
Bruce Macintosh1, Bruce Macintosh2, James R. Graham3, Travis Barman4, R. J. De Rosa3, Quinn Konopacky5, Mark S. Marley6, Christian Marois7, Christian Marois8, Eric L. Nielsen1, Laurent Pueyo9, Abhijith Rajan10, Julien Rameau11, Didier Saumon12, Jason J. Wang3, Jennifer Patience10, Mark Ammons2, Pauline Arriaga13, Étienne Artigau11, Steven V. W. Beckwith3, J. Brewster, Sebastian Bruzzone14, Joanna Bulger15, Joanna Bulger10, Ben Burningham16, Ben Burningham6, Adam Burrows17, Christine Chen9, Eugene Chiang3, Jeffrey Chilcote18, Rebekah I. Dawson3, Ruobing Dong3, René Doyon11, Z. H. Draper8, Gaspard Duchêne3, Gaspard Duchêne19, Thomas M. Esposito13, Daniel C. Fabrycky20, Michael P. Fitzgerald13, Katherine B. Follette1, J. J. Fortney21, B. L. Gerard8, S. Goodsell22, A. Z. Greenbaum9, P. Hibon, Sasha Hinkley23, Tara Cotten24, Li-Wei Hung13, Patrick Ingraham, M. Johnson-Groh8, Paul Kalas3, David Lafrenière11, James E. Larkin13, J. Lee24, Michael R. Line21, Douglas Long9, Jérôme Maire18, Franck Marchis, Brenda C. Matthews8, Brenda C. Matthews7, Claire E. Max21, Stanimir Metchev14, Stanimir Metchev25, Max Millar-Blanchaer18, Tushar Mittal3, Caroline V. Morley21, Katie M. Morzinski4, R. Murray-Clay26, Rebecca Oppenheimer27, Dave Palmer2, Rahul Patel25, Marshall D. Perrin9, Lisa Poyneer2, Roman R. Rafikov17, Fredrik T. Rantakyrö, Emily L. Rice27, Patricio Rojo28, Alex Rudy21, Jean-Baptiste Ruffio1, Maria Teresa Ruiz28, Naru Sadakuni29, Leslie Saddlemyer8, M. Salama3, Dmitry Savransky30, Adam C. Schneider31, Anand Sivaramakrishnan9, Inseok Song24, Rémi Soummer9, S. Thomas, Gautam Vasisht32, James K. Wallace32, Kimberly Ward-Duong10, Sloane J. Wiktorowicz21, Schuyler Wolff9, Barry Zuckerman13 
TL;DR: In this paper, the Gemini Planet Imager was used to detect a planet orbiting the star 51 Eridani at a projected separation of 13 astronomical units, with a spectrum with strong methane and water vapor absorption.
Abstract: Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric composition and luminosity, which is influenced by their formation mechanism. Using the Gemini Planet Imager, we discovered a planet orbiting the \$sim$20 Myr-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water vapor absorption. Modeling of the spectra and photometry yields a luminosity of L/LS=1.6-4.0 x 10-6 and an effective temperature of 600-750 K. For this age and luminosity, "hot-start" formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the "cold- start" core accretion process that may have formed Jupiter.

Proceedings ArticleDOI
16 May 2015
TL;DR: This research examines the work practices of project contributors and the challenges they face within the pull-based development model by conducting a survey with top contributors to active OSS projects on GitHub.
Abstract: In the pull-based development model, the integrator has the crucial role of managing and integrating contributions. This work focuses on the role of the integrator and investigates working habits and challenges alike. We set up an exploratory qualitative study involving a large-scale survey of 749 integrators, to which we add quantitative data from the integrator's project. Our results provide insights into the factors they consider in their decision making process to accept or reject a contribution. Our key findings are that integrators struggle to maintain the quality of their projects and have difficulties with prioritizing contributions that are to be merged. Our insights have implications for practitioners who wish to use or improve their pull-based development process, as well as for researchers striving to understand the theoretical implications of the pull-based model in software development.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the circular velocity profiles of galaxies in A cold dark matter (CDM) cosmological hydrodynamical simulations from the EAGLE and LOCAL GROUPS projects and compared them with a compilation of observed rotation curves of galaxies spanning a wide range in mass.
Abstract: We examine the circular velocity profiles of galaxies in A cold dark matter (CDM) cosmological hydrodynamical simulations from the EAGLE and LOCAL GROUPS projects and compare them with a compilation of observed rotation curves of galaxies spanning a wide range in mass. The shape of the circular velocity profiles of simulated galaxies varies systematically as a function of galaxy mass, but shows remarkably little variation at fixed maximum circular velocity. This is especially true for low-mass dark-matter-dominated systems, reflecting the expected similarity of the underlying CDM haloes. This is at odds with observed dwarf galaxies, which show a large diversity of rotation curve shapes, even at fixed maximum rotation speed. Some dwarfs have rotation curves that agree well with simulations, others do not. The latter are systems where the inferred mass enclosed in the inner regions is much lower than expected for CDM haloes and include many galaxies where previous work claims the presence of a constant density 'core'. The 'cusp versus core' issue is thus better characterized as an 'inner mass deficit' problem than as a density slope mismatch. For several galaxies, the magnitude of this inner mass deficit is well in excess of that reported in recent simulations where cores result from baryon-induced fluctuations in the gravitational potential. We conclude that one or more of the following statements must be true: (i) the dark matter is more complex than envisaged by any current model; (ii) current simulations fail to reproduce the diversity in the effects of baryons on the inner regions of dwarf galaxies; and/or (iii) the mass profiles of 'inner mass deficit' galaxies inferred from kinematic data are incorrect.

Journal ArticleDOI
TL;DR: A comprehensive meta-analysis that overcomes the limitations of prior narrative reviews and quantitative reviews with small samples revealed a significant degree of heterogeneity among the studies that could not be explained well by the proposed moderators.
Abstract: Physical activity (PA) has a profound impact on health and development in children. Parental behaviors (i.e., modeling and support) represent an obvious important factor in child PA. The purpose of this paper was to provide a comprehensive meta-analysis that overcomes the limitations of prior narrative reviews and quantitative reviews with small samples. Ten major databases were used in the literature search. One-hundred and fifteen studies passed the eligibility criteria. Both fixed and random effects models with correction for sampling and measurement error were examined in the analysis. Moderator analyses investigating the effects of child’s developmental age, study design, parental gender, measurement of child PA, and quality rating were performed. Based on the random effects model, the results showed that parental modeling was weakly associated with child PA (summary r = .16, 95% CI .09-.24) and none of the proposed moderators were significant. Separate analyses examining the moderating effects of parental gender and boys’ PA found that that father-son PA modeling (r = .29, 95% CI .21-.36) was significantly higher compared to mother-son PA (r = .19, 95% CI .14-.23; p .05). The random effects model indicated an overall moderate effect size for the parental support and child PA relationship (summary r = .38, 95% CI .30-.46). Here, the only significant moderating variable was the measurement of child PA (objective: r = .20, 95% CI .13-.26; reported: r = .46, 95% CI .37-.55; p < .01). Parental support and modeling relate to child PA, yet our results revealed a significant degree of heterogeneity among the studies that could not be explained well by our proposed moderators.

Journal ArticleDOI
TL;DR: Implementation evaluation supports scale-up of effective school-based PA interventions and thus population-level change and serves as a call to action to address the link between implementation and outcome within the school- based PA literature and improve and standardize definitions and measurement of implementation.

Journal ArticleDOI
TL;DR: A new LC-MS/MS method is provided for precise and accurate quantitation of SCFAs in human feces to understand the complex interplay between diet, gut microbiota and host metabolism homeostasis.

Journal ArticleDOI
TL;DR: The full catalog of Young Stellar Objects (YSOs) identified in the 18 molecular clouds surveyed by the Spitzer Space Telescope "cores to disks" (c2d) and "Gould Belt" (GB) Legacy surveys is presented in this paper.
Abstract: We present the full catalog of Young Stellar Objects (YSOs) identified in the 18 molecular clouds surveyed by the Spitzer Space Telescope "cores to disks" (c2d) and "Gould Belt" (GB) Legacy surveys. Using standard techniques developed by the c2d project, we identify 3239 candidate YSOs in the 18 clouds, 2966 of which survive visual inspection and form our final catalog of YSOs in the Gould Belt. We compile extinction corrected SEDs for all 2966 YSOs and calculate and tabulate the infrared spectral index, bolometric luminosity, and bolometric temperature for each object. We find that 326 (11%), 210 (7%), 1248 (42%), and 1182 (40%) are classified as Class 0+I, Flat-spectrum, Class II, and Class III, respectively, and show that the Class III sample suffers from an overall contamination rate by background AGB stars between 25% and 90%. Adopting standard assumptions, we derive durations of 0.40-0.78 Myr for Class 0+I YSOs and 0.26-0.50 Myr for Flat-spectrum YSOs, where the ranges encompass uncertainties in the adopted assumptions. Including information from (sub)millimeter wavelengths, one-third of the Class 0+I sample is classified as Class 0, leading to durations of 0.13-0.26 Myr (Class 0) and 0.27-0.52 Myr (Class I). We revisit infrared color-color diagrams used in the literature to classify YSOs and propose minor revisions to classification boundaries in these diagrams. Finally, we show that the bolometric temperature is a poor discriminator between Class II and Class III YSOs.

Journal ArticleDOI
K. Abe1, J. Adam2, Hiroaki Aihara1, T. Akiri3  +367 moreInstitutions (53)
TL;DR: In this article, the authors report on measurements of neutrino oscillation using data from the T2K long-baseline neutrinos experiment collected between 2010 and 2013 and find the following estimates and 68% confidence intervals for the two possible mass hierarchies: Normal Hierarchy:
Abstract: We report on measurements of neutrino oscillation using data from the T2K long-baseline neutrino experiment collected between 2010 and 2013. In an analysis of muon neutrino disappearance alone, we find the following estimates and 68% confidence intervals for the two possible mass hierarchies: Normal Hierarchy: $\sin^2\theta_{23}=0.514^{+0.055}_{-0.056}$ and $\Delta m^2_{32}=(2.51\pm0.10)\times 10^{-3}$ eV$^2$/c$^4$ Inverted Hierarchy: $\sin^2\theta_{23}=0.511\pm0.055$ and $\Delta m^2_{13}=(2.48\pm0.10)\times 10^{-3}$ eV$^2$/c$^4$ The analysis accounts for multi-nucleon mechanisms in neutrino interactions which were found to introduce negligible bias. We describe our first analyses that combine measurements of muon neutrino disappearance and electron neutrino appearance to estimate four oscillation parameters and the mass hierarchy. Frequentist and Bayesian intervals are presented for combinations of these parameters, with and without including recent reactor measurements. At 90% confidence level and including reactor measurements, we exclude the region: $\delta_{CP}=[0.15,0.83]\pi$ for normal hierarchy and $\delta_{CP}=[-0.08,1.09]\pi$ for inverted hierarchy. The T2K and reactor data weakly favor the normal hierarchy with a Bayes Factor of 2.2. The most probable values and 68% 1D credible intervals for the other oscillation parameters, when reactor data are included, are: $\sin^2\theta_{23}=0.528^{+0.055}_{-0.038}$ and $|\Delta m^2_{32}|=(2.51\pm0.11)\times 10^{-3}$ eV$^2$/c$^4$.

Journal ArticleDOI
TL;DR: The Subjective Cognitive Decline Initiative (SCD-I) Working Group is an international consortium established to develop a conceptual framework and research criteria for SCD (Jessen et al. as mentioned in this paper ).
Abstract: Research increasingly suggests that subjective cognitive decline (SCD) in older adults, in the absence of objective cognitive dysfunction or depression, may be a harbinger of non-normative cognitive decline and eventual progression to dementia. Little is known, however, about the key features of self-report measures currently used to assess SCD. The Subjective Cognitive Decline Initiative (SCD-I) Working Group is an international consortium established to develop a conceptual framework and research criteria for SCD (Jessen et al., 2014, Alzheimers Dement 10, 844-852). In the current study we systematically compared cognitive self-report items used by 19 SCD-I Working Group studies, representing 8 countries and 5 languages. We identified 34 self-report measures comprising 640 cognitive self-report items. There was little overlap among measures- approximately 75% of measures were used by only one study. Wide variation existed in response options and item content. Items pertaining to the memory domain predominated, accounting for about 60% of items surveyed, followed by executive function and attention, with 16% and 11% of the items, respectively. Items relating to memory for the names of people and the placement of common objects were represented on the greatest percentage of measures (56% each). Working group members reported that instrument selection decisions were often based on practical considerations beyond the study of SCD specifically, such as availability and brevity of measures. Results document the heterogeneity of approaches across studies to the emerging construct of SCD. We offer preliminary recommendations for instrument selection and future research directions including identifying items and measure formats associated with important clinical outcomes.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, J. Abdallah4  +2914 moreInstitutions (169)
TL;DR: In this article, the jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of [Formula: see text]TeV corresponding to an integrated luminosity of [formula] see text][formula:see text].
Abstract: The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of [Formula: see text] TeV corresponding to an integrated luminosity of [Formula: see text][Formula: see text]. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-[Formula: see text] algorithm with distance parameters [Formula: see text] or [Formula: see text], and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a [Formula: see text] boson, for [Formula: see text] and pseudorapidities [Formula: see text]. The effect of multiple proton-proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region ([Formula: see text]) for jets with [Formula: see text]. For central jets at lower [Formula: see text], the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton-proton collisions and test-beam data, which also provide the estimate for [Formula: see text] TeV. The calibration of forward jets is derived from dijet [Formula: see text] balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-[Formula: see text] jets at [Formula: see text]. Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5-3 %.

Journal ArticleDOI
TL;DR: Leisure constraints theory was used as a framework to systematically review factors associated with dropout of organized sport among children and adolescents as discussed by the authors, finding that intrapersonal and interpersonal constraints are more frequently associated with dropping out of sport than structural constraints.
Abstract: Leisure constraints theory was used as a framework to systematically review factors associated with dropout of organized sport among children and adolescents. Keyword searches for the population, context and construct of interest (i.e. dropout) identified articles from the entire contents of the following databases: Academic Search Complete, ERIC, MEDLINE, PsycINFO and SPORTDiscus. The initial search yielded 557 studies, and 43 met the selection criteria. Most studies focused solely on adolescents, and 89% of participants were male. Most studies were cross-sectional using quantitative approaches. Almost 30 different sports were included in the reviewed studies; however, the most represented sports were soccer, swimming, gymnastics and basketball. Findings from this review indicated that intrapersonal and interpersonal constraints are more frequently associated with dropping out of sport than structural constraints. Although many discrete factors associated with dropout were identified, five major areas em...

Journal ArticleDOI
19 Feb 2015-Nature
TL;DR: The conserved co-activator complex Mediator enables regulated transcription initiation by RNA polymerase (Pol) II by reconstitute an active 15-subunit core Mediator comprising all essential Mediator subunits from Saccharomyces cerevisiae.
Abstract: The conserved co-activator complex Mediator enables regulated transcription initiation by RNA polymerase (Pol) II. Here we reconstitute an active 15-subunit core Mediator (cMed) comprising all essential Mediator subunits from Saccharomyces cerevisiae. The cryo-electron microscopic structure of cMed bound to a core initiation complex was determined at 9.7 A resolution. cMed binds Pol II around the Rpb4-Rpb7 stalk near the carboxy-terminal domain (CTD). The Mediator head module binds the Pol II dock and the TFIIB ribbon and stabilizes the initiation complex. The Mediator middle module extends to the Pol II foot with a 'plank' that may influence polymerase conformation. The Mediator subunit Med14 forms a 'beam' between the head and middle modules and connects to the tail module that is predicted to bind transcription activators located on upstream DNA. The Mediator 'arm' and 'hook' domains contribute to a 'cradle' that may position the CTD and TFIIH kinase to stimulate Pol II phosphorylation.

Journal ArticleDOI
TL;DR: Observational evidence is presented that submesoscale flows undergo a seasonal cycle in the surface mixed layer: they are much stronger in winter than in summer.
Abstract: Although the strongest ocean surface currents occur at horizontal scales of order 100 km, recent numerical simulations suggest that flows smaller than these mesoscale eddies can achieve important vertical transports in the upper ocean. These submesoscale flows, 1–100 km in horizontal extent, take heat and atmospheric gases down into the interior ocean, accelerating air–sea fluxes, and bring deep nutrients up into the sunlit surface layer, fueling primary production. Here we present observational evidence that submesoscale flows undergo a seasonal cycle in the surface mixed layer: they are much stronger in winter than in summer. Submesoscale flows are energized by baroclinic instabilities that develop around geostrophic eddies in the deep winter mixed layer at a horizontal scale of order 1–10 km. Flows larger than this instability scale are energized by turbulent scale interactions. Enhanced submesoscale activity in the winter mixed layer is expected to achieve efficient exchanges with the permanent thermocline below.