scispace - formally typeset
Open AccessJournal ArticleDOI

Genetic compensation: A phenomenon in search of mechanisms.

TLDR
This review revisits studies reporting genetic compensation in higher eukaryotes and outlines possible molecular mechanisms, which may include both transcriptional and posttranscriptional processes.
Abstract
Several recent studies in a number of model systems including zebrafish, Arabidopsis, and mouse have revealed phenotypic differences between knockouts (i.e., mutants) and knockdowns (e.g., antisense-treated animals). These differences have been attributed to a number of reasons including off-target effects of the antisense reagents. An alternative explanation was recently proposed based on a zebrafish study reporting that genetic compensation was observed in egfl7 mutant but not knockdown animals. Dosage compensation was first reported in Drosophila in 1932, and genetic compensation in response to a gene knockout was first reported in yeast in 1969. Since then, genetic compensation has been documented many times in a number of model organisms; however, our understanding of the underlying molecular mechanisms remains limited. In this review, we revisit studies reporting genetic compensation in higher eukaryotes and outline possible molecular mechanisms, which may include both transcriptional and posttranscriptional processes.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Highly efficient manipulation of nervous system gene expression with NEPTUNE

TL;DR: NEPTUNE offers a rapid and cost-effective technique to test gene function in the nervous system and can reveal phenotypes incompatible with life.
Journal ArticleDOI

HSP-Target of Therapeutic Agents in Sepsis Treatment

TL;DR: The main results of studies on therapeutic agents in targeting HSPs in sepsis treatment are presented and limitations and possibilities for future investigations regarding HSP modulators are discussed.
Journal ArticleDOI

Antisense Oligodeoxynucleotide Perfusion Blocks Gene Expression of Synaptic Plasticity-related Proteins without Inducing Compensation in Hippocampal Slices.

TL;DR: A novel method to rapidly suppress gene expression by antisense oligodeoxynucleotides applied to rodent brain slices in an “Oslo-type” interface chamber, which combines the ability to acutely block new synthesis of specific proteins for the study of long- term synaptic plasticity, while maintaining properties of synaptic transmission that reproduce in vivo conditions relevant for long-term memory.
References
More filters
Journal ArticleDOI

Network biology: understanding the cell's functional organization

TL;DR: This work states that rapid advances in network biology indicate that cellular networks are governed by universal laws and offer a new conceptual framework that could potentially revolutionize the view of biology and disease pathologies in the twenty-first century.
Journal ArticleDOI

Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?

TL;DR: This Review summarizes the current understanding of the mechanistic aspects of microRNA-induced repression of translation and discusses some of the controversies regarding different modes of micro RNA function.
Journal ArticleDOI

Functional profiling of the Saccharomyces cerevisiae genome.

Guri Giaever, +72 more
- 25 Jul 2002 - 
TL;DR: It is shown that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment, and less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal Growth in four of the tested conditions.
Journal ArticleDOI

Gene Action in the X -chromosome of the Mouse ( Mus musculus L.)

TL;DR: Ohno and Hauschka1 showed that in female mice one chromosome of mammary carcinoma cells and of normal diploid cells of the ovary, mammary gland and liver was heteropyKnotic and suggested that the so-called sex chromatin was composed of one heteropyknotic X-chromosome.
Journal ArticleDOI

The Transcriptional Landscape of the Mammalian Genome

Piero Carninci, +197 more
- 02 Sep 2005 - 
TL;DR: Detailed polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
Related Papers (5)

The zebrafish reference genome sequence and its relationship to the human genome.

Kerstin Howe, +174 more
- 25 Apr 2013 -