scispace - formally typeset
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

Changgu Lee, +4 more
- 18 Jul 2008 - 
- Vol. 321, Iss: 5887, pp 385-388
TLDR
Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract
We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Recent advances in chemical modifications of graphene

TL;DR: Graphene has attracted the interest of chemists, physicists, and materials scientists due to its extraordinary structural, mechanical, and electronic properties as mentioned in this paper, and several chemical and physical functionalization methods have been explored to improve the stabilization and modification of graphene.
Journal ArticleDOI

Alternate Multilayer Films of Poly(vinyl alcohol) and Exfoliated Graphene Oxide Fabricated via a Facial Layer-by-Layer Assembly

TL;DR: In this paper, an ultrathin multilayer (PVA/GO)n films were successfully fabricated by bottom-up layer-by-layer assembly of poly(vinyl alcohol) and exfoliated graphene oxide (GO) nanosheets.
Journal ArticleDOI

Polymer functionalization and solubilization of carbon nanosheets

TL;DR: Few-layer graphene materials or "carbon nanosheets" were covalently functionalized with poly(vinyl alcohol) via ester linkages, and the resulting functionalized sample became soluble, allowing solution-phase processing for various purposes such as the fabrication of polymer-carbon nanOSheets composites containing no dispersion agents or any other foreign substances.
Journal ArticleDOI

A facile green strategy for rapid reduction of graphene oxide by metallic zinc

TL;DR: In this article, a green and facile approach to the synthesis of graphene nanosheets through the zinc reduction of a graphene oxide precursor in alkaline media is reported, and the reduction degree of GO in the present condition is much higher than that in either Zn or alkaline solutions alone.
References
More filters
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

The Phenomena of Rupture and Flow in Solids

TL;DR: In this article, the authors investigated the effect of surface scratches on the mechanical strength of solids, and some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion.
Book

Physical properties of crystals

John F. Nye
TL;DR: In this paper, the physical properties of crystals systematically in tensor notation are presented, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them.
Journal ArticleDOI

Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load

TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Related Papers (5)