scispace - formally typeset
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

Changgu Lee, +4 more
- 18 Jul 2008 - 
- Vol. 321, Iss: 5887, pp 385-388
TLDR
Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract
We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Mechanical properties and microstructure of a graphene oxide-cement composite

TL;DR: Graphene oxide (GO) is the product of chemical exfoliation of graphite and is a potential candidate for use as nanoreinforcements in cement-based materials as discussed by the authors.
Journal ArticleDOI

Exceptional Tunability of Band Energy in a Compressively Strained Trilayer MoS2 Sheet

TL;DR: An electromechanical device that can apply biaxial compressive strain to trilayer MoS2 supported by a piezoelectric substrate and covered by a transparent graphene electrode and reveals the blue-shift of the direct band gap and a higher tunability of the indirect band gap than the direct one.
Journal ArticleDOI

Review on superior strength and enhanced ductility of metallic nanomaterials

TL;DR: In this article, the authors present an overview of experimental data and theoretical concepts addressing the unique combination of superior strength and enhanced ductility of metallic nanomaterials, and consider the basic approaches and methods for simultaneously optimizing their strength and ductility, employing principal deformation mechanisms, crystallographic texture, chemical composition as well as second-phase nano-precipitates, carbon nanotubes and graphene.
Journal ArticleDOI

Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties

TL;DR: In this paper, an eco-friendly strategy for fabricating the polymer nanocomposites with well-dispersed graphene sheets in the polymer matrix via first coating graphene using polypropylene (PP) latex and then melt-blending the coated graphene with PP matrix.
References
More filters
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

The Phenomena of Rupture and Flow in Solids

TL;DR: In this article, the authors investigated the effect of surface scratches on the mechanical strength of solids, and some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion.
Book

Physical properties of crystals

John F. Nye
TL;DR: In this paper, the physical properties of crystals systematically in tensor notation are presented, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them.
Journal ArticleDOI

Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load

TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Related Papers (5)