scispace - formally typeset
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

Changgu Lee, +4 more
- 18 Jul 2008 - 
- Vol. 321, Iss: 5887, pp 385-388
TLDR
Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract
We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Graphene-based materials for flexible supercapacitors

TL;DR: The demand for flexible/wearable electronic devices that have aesthetic appeal and multi-functionality has stimulated the rapid development of flexible supercapacitors with enhanced electrochemical performance and mechanical flexibility and current progress made with graphene-based electrodes is summarized.
Journal ArticleDOI

High-concentration solvent exfoliation of graphene.

TL;DR: A method is demonstrated to prepare graphene dispersions at high concentrations, up to 1.2 mg mL(-1), with yields of up to 4 wt% monolayers that facilitates graphene processing for a range of applications.
Journal ArticleDOI

Graphene chiral liquid crystals and macroscopic assembled fibres

TL;DR: It is reported that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations.
Journal ArticleDOI

Performance of monolayer graphene nanomechanical resonators with electrical readout

TL;DR: By establishing many of the basic attributes of monolayer graphene resonators, the groundwork for applications of these devices, including high-sensitivity mass detectors, is put in place.
Journal ArticleDOI

Superior mechanical flexibility of phosphorene and few-layer black phosphorus

TL;DR: In this article, the authors employed first principles density functional theory calculations to explore the mechanical properties of phosphorene, including ideal tensile strength and critical strain, and they found that a monolayer polysilicon can sustain tensile strain up to 27% and 30% in the zigzag and armchair directions, respectively.
References
More filters
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

The Phenomena of Rupture and Flow in Solids

TL;DR: In this article, the authors investigated the effect of surface scratches on the mechanical strength of solids, and some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion.
Book

Physical properties of crystals

John F. Nye
TL;DR: In this paper, the physical properties of crystals systematically in tensor notation are presented, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them.
Journal ArticleDOI

Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load

TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Related Papers (5)