scispace - formally typeset
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

Changgu Lee, +4 more
- 18 Jul 2008 - 
- Vol. 321, Iss: 5887, pp 385-388
TLDR
Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract
We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A Novel Method for Applying Reduced Graphene Oxide Directly to Electronic Textiles from Yarns to Fabrics

TL;DR: Conductive, flexible, and durable reduced RGO textiles with a facile preparation method are presented and BSA proteins serve as universal adhesives for improving the adsorption of GO onto any textile, irrespective of the materials and the surface conditions.
Journal ArticleDOI

Unoxidized Graphene/Alumina Nanocomposite: Fracture- and Wear-Resistance Effects of Graphene on Alumina Matrix

TL;DR: The synthesis of unoxidized graphene/alumina composite materials having enhanced toughness, strength, and wear-resistance by a low-cost and environmentally benign pressure-less-sintering process is reported on.
Journal ArticleDOI

Strain engineering the properties of graphene and other two-dimensional crystals.

TL;DR: Recent advances in the strain engineering of thin layer materials are discussed, with a focus on using Raman spectroscopy and electrical transport to investigate the effect of strain as well as theeffect of strain on the chemical functionalisation of graphene.
Journal ArticleDOI

Determination of the Bending Rigidity of Graphene via Electrostatic Actuation of Buckled Membranes

TL;DR: In this paper, the bending rigidity of bilayer graphene membranes under ambient conditions was determined to be 35.5(-15.0) eV and +20.0 eV, respectively.
References
More filters
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

The Phenomena of Rupture and Flow in Solids

TL;DR: In this article, the authors investigated the effect of surface scratches on the mechanical strength of solids, and some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion.
Book

Physical properties of crystals

John F. Nye
TL;DR: In this paper, the physical properties of crystals systematically in tensor notation are presented, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them.
Journal ArticleDOI

Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load

TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Related Papers (5)