scispace - formally typeset
Journal ArticleDOI

When group-III nitrides go infrared: New properties and perspectives

Junqiao Wu
- 01 Jul 2009 - 
- Vol. 106, Iss: 1, pp 011101
TLDR
In this paper, the bandgap of InN was revised from 1.9 eV to a much narrower value of 0.64 eV, which is the smallest bandgap known to date.
Abstract
Wide-band-gap GaN and Ga-rich InGaN alloys, with energy gaps covering the blue and near-ultraviolet parts of the electromagnetic spectrum, are one group of the dominant materials for solid state lighting and lasing technologies and consequently, have been studied very well. Much less effort has been devoted to InN and In-rich InGaN alloys. A major breakthrough in 2002, stemming from much improved quality of InN films grown using molecular beam epitaxy, resulted in the bandgap of InN being revised from 1.9 eV to a much narrower value of 0.64 eV. This finding triggered a worldwide research thrust into the area of narrow-band-gap group-III nitrides. The low value of the InN bandgap provides a basis for a consistent description of the electronic structure of InGaN and InAlN alloys with all compositions. It extends the fundamental bandgap of the group III-nitride alloy system over a wider spectral region, ranging from the near infrared at ∼1.9 μm (0.64 eV for InN) to the ultraviolet at ∼0.36 μm (3.4 eV for GaN...

read more

Citations
More filters
Journal ArticleDOI

Near-infrared phosphorescence: materials and applications

TL;DR: This review describes the overall progress made in the past ten years on NIR phosphorescent transition-metal complexes including Cu(I), Cu(II), Cr(III), Re(I, Re-I), Re-III, Ru(II) and Au(I) complexes, with a primary focus on material design complemented with a selection of optical, electronic, sensory, and biologic applications.
Journal ArticleDOI

Visible light-driven efficient overall water splitting using p -type metal-nitride nanowire arrays

TL;DR: It is shown that efficient and stable stoichiometric dissociation of water into hydrogen and oxygen can be achieved under visible light by eradicating the potential barrier on nonpolar surfaces of indium gallium nitride nanowires through controlled p-type dopant incorporation.

Valence band splittings and band offsets of AlN, GaN and InN.

Su-Huai Wei, +1 more
TL;DR: In this article, first principles electronic structure calculations on wurtzite AlN, GaN, and InN reveal crystal field splitting parameters ΔCF of −217, 42, and 41 meV, respectively.
Journal ArticleDOI

Conductivity in transparent oxide semiconductors

TL;DR: Understanding this interplay, as well as the microscopic contenders for providing the conductivity of these materials, will prove essential to the future design and control of TCO semiconductors, and their implementation into novel multifunctional devices.
Journal ArticleDOI

InGaN Solar Cells: Present State of the Art and Important Challenges

TL;DR: A review on the present state of the art of In-based solar cells is presented and the most important challenges toward the high-efficiency N materials are discussed in the context of the recent results.
References
More filters
Journal ArticleDOI

RF-MBE growth of a-plane InN on r-plane sapphire with a GaN underlayer

TL;DR: In this paper, micro-Raman scattering measurements for a -plane InN film were carried out, which can be identified as the A 1 transversal optical (TO), E 2 (high) and E 1 longitudinal optical (LO) mode phonon, respectively.
Journal ArticleDOI

Transport and Mobility Properties of Bulk Indium Nitride (InN) and a Two-Dimensional Electron Gas in an InGaN/GaN Quantum Well

TL;DR: In this paper, the transport and low-field mobility properties of bulk InN and a two-dimensional electron gas confined in an InGaN/GaN quantum well with regard to various parameters such as well width and interface roughness as a function of temperature are compared.
Journal ArticleDOI

Investigation on the structural origin of n-type conductivity in InN films

TL;DR: In this article, a study of the correlation between the electrical properties and structural defects in nominally undoped InN films is presented, where the density of edge-type threading dislocations (TDs) considerably affects the electron concentration and mobility.
Journal ArticleDOI

Surface electronic properties of undoped InAlN alloys

TL;DR: In this paper, the variation in surface electronic properties of undoped c-plane InxAl1−xN alloys has been investigated across the composition range using a combination of high-resolution x-ray photoemission spectroscopy and single-field Hall effect measurements.
Related Papers (5)