scispace - formally typeset
Journal ArticleDOI

When group-III nitrides go infrared: New properties and perspectives

Junqiao Wu
- 01 Jul 2009 - 
- Vol. 106, Iss: 1, pp 011101
TLDR
In this paper, the bandgap of InN was revised from 1.9 eV to a much narrower value of 0.64 eV, which is the smallest bandgap known to date.
Abstract
Wide-band-gap GaN and Ga-rich InGaN alloys, with energy gaps covering the blue and near-ultraviolet parts of the electromagnetic spectrum, are one group of the dominant materials for solid state lighting and lasing technologies and consequently, have been studied very well. Much less effort has been devoted to InN and In-rich InGaN alloys. A major breakthrough in 2002, stemming from much improved quality of InN films grown using molecular beam epitaxy, resulted in the bandgap of InN being revised from 1.9 eV to a much narrower value of 0.64 eV. This finding triggered a worldwide research thrust into the area of narrow-band-gap group-III nitrides. The low value of the InN bandgap provides a basis for a consistent description of the electronic structure of InGaN and InAlN alloys with all compositions. It extends the fundamental bandgap of the group III-nitride alloy system over a wider spectral region, ranging from the near infrared at ∼1.9 μm (0.64 eV for InN) to the ultraviolet at ∼0.36 μm (3.4 eV for GaN...

read more

Citations
More filters
Journal ArticleDOI

Near-infrared phosphorescence: materials and applications

TL;DR: This review describes the overall progress made in the past ten years on NIR phosphorescent transition-metal complexes including Cu(I), Cu(II), Cr(III), Re(I, Re-I), Re-III, Ru(II) and Au(I) complexes, with a primary focus on material design complemented with a selection of optical, electronic, sensory, and biologic applications.
Journal ArticleDOI

Visible light-driven efficient overall water splitting using p -type metal-nitride nanowire arrays

TL;DR: It is shown that efficient and stable stoichiometric dissociation of water into hydrogen and oxygen can be achieved under visible light by eradicating the potential barrier on nonpolar surfaces of indium gallium nitride nanowires through controlled p-type dopant incorporation.

Valence band splittings and band offsets of AlN, GaN and InN.

Su-Huai Wei, +1 more
TL;DR: In this article, first principles electronic structure calculations on wurtzite AlN, GaN, and InN reveal crystal field splitting parameters ΔCF of −217, 42, and 41 meV, respectively.
Journal ArticleDOI

Conductivity in transparent oxide semiconductors

TL;DR: Understanding this interplay, as well as the microscopic contenders for providing the conductivity of these materials, will prove essential to the future design and control of TCO semiconductors, and their implementation into novel multifunctional devices.
Journal ArticleDOI

InGaN Solar Cells: Present State of the Art and Important Challenges

TL;DR: A review on the present state of the art of In-based solar cells is presented and the most important challenges toward the high-efficiency N materials are discussed in the context of the recent results.
References
More filters
Journal ArticleDOI

Optical bandgap energy of wurtzite InN

TL;DR: Wurtzite InN films were grown on a thick GaN layer by metalorganic vapor phase epitaxy as discussed by the authors, and growth of a (0001)-oriented single crystalline layer was confirmed by Raman scattering, x-ray diffraction, and reflection high energy electron diffraction.
Journal ArticleDOI

Valence‐band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x‐ray photoemission spectroscopy

TL;DR: In this paper, the valence band discontinuities at various wurtzite GaN, AlN, and InN heterojunctions were measured by means of x-ray photoemission spectroscopy.
Journal ArticleDOI

Temperature dependence of the dielectric function and interband critical points in silicon

TL;DR: The character of the ${E}_{1}$ transitions in semiconductors is analyzed and it is found that for Si and light III-V or II-VI compounds an excitonic line shape represents best the experimental data, whereas for Ge, Ge, \ensuremath{\alpha}-Sn, and heavy III-Worcestershire compounds a two-dimensional critical point yields the best representation.
Journal ArticleDOI

High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays

TL;DR: In this paper, the authors demonstrate the realization of the high-brightness and high-efficiency light emitting diodes (LEDs) using dislocation-free indium gallium nitride (InGaN)/gallium oxide (GaN) multiquantum-well (MQW) arrays by metal organic-hydride vapor phase epitaxy (MO−HVPE).
Journal ArticleDOI

Complete composition tunability of InGaN nanowires using a combinatorial approach

TL;DR: It is proposed that the exceptional composition tunability of InGaN nitride is due to the low process temperature and the ability of the nanowire morphology to accommodate strain-relaxed growth, which suppresses the tendency toward phase separation that plagues the thin-film community.
Related Papers (5)