scispace - formally typeset
Search or ask a question

Showing papers on "In vivo published in 2013"


Journal ArticleDOI
TL;DR: DPPH method was found to be used mostly for the in vitro antioxidant activity evaluation purpose while LPO was found as mostly used in vivo antioxidant assay.
Abstract: A good number of abstracts and research articles (in total 74) published, so far, for evaluating antioxidant activity of various samples of research interest were gone through where 407 methods were come across, which were repeated from 29 different methods. These were classified as in vitro and in vivo methods. And those are described and discussed below in this review article. In the later part of this review article, frequency of in vitro as well as in vivo methods is analyzed with a bar diagram. Solvents are important for extracting antioxidants from natural sources. Frequency of solvents used for extraction is also portrayed and the results are discussed in this article. As per this review there are 19 in vitro methods and 10 in vivo methods that are being used for the evaluation of antioxidant activity of the sample of interest. DPPH method was found to be used mostly for the in vitro antioxidant activity evaluation purpose while LPO was found as mostly used in vivo antioxidant assay. Ethanol was with the highest frequency as solvent for extraction purpose.

1,207 citations


Journal ArticleDOI
06 Mar 2013-Brain
TL;DR: It is shown that intracerebral injections of sarkosyl-insoluble α- Synuclein from brains of patients with dementia with Lewy bodies induced hyperphosphorylated α-synuclein pathology in wild-type mice and injection of fibrils of recombinant human and mouse α- synuclein efficiently induced similar α-Synuclein pathologies inWild- type mice.
Abstract: α-Synuclein is the major component of filamentous inclusions that constitute the defining characteristic of neurodegenerative α-synucleinopathies. However, the molecular mechanisms underlying α-synuclein accumulation and spread are unclear. Here we show that intracerebral injections of sarkosyl-insoluble α-synuclein from brains of patients with dementia with Lewy bodies induced hyperphosphorylated α-synuclein pathology in wild-type mice. Furthermore, injection of fibrils of recombinant human and mouse α-synuclein efficiently induced similar α-synuclein pathologies in wild-type mice. C57BL/6J mice injected with α-synuclein fibrils developed abundant Lewy body/Lewy neurite-like pathology, whereas mice injected with soluble α-synuclein did not. Immunoblot analysis demonstrated that endogenous mouse α-synuclein started to accumulate 3 months after inoculation, while injected human α-synuclein fibrils disappeared in about a week. These results indicate that α-synuclein fibrils have prion-like properties and inoculation into wild-type brain induces α-synuclein pathology in vivo. This is a new mouse model of sporadic α-synucleinopathy and should be useful for elucidating progression mechanisms and evaluating disease-modifying therapy.

682 citations


Journal ArticleDOI
TL;DR: The first evidence of multispectral, real-time short wavelength infrared imaging offering anatomical resolution using brightly-emitting rare-earth nanomaterials is reported, laying the groundwork for a new generation of versatile, biomedical nanommaterials that can advance disease monitoring based on a pioneering infrared imaging technique.
Abstract: The extension of in vivo optical imaging for disease screening and image-guided surgical interventions requires brightly emitting, tissue-specific materials that optically transmit through living tissue and can be imaged with portable systems that display data in real-time. Recent work suggests that a new window across the short-wavelength infrared region can improve in vivo imaging sensitivity over near infrared light. Here we report on the first evidence of multispectral, real-time short-wavelength infrared imaging offering anatomical resolution using brightly emitting rare-earth nanomaterials and demonstrate their applicability toward disease-targeted imaging. Inorganic-protein nanocomposites of rare-earth nanomaterials with human serum albumin facilitated systemic biodistribution of the rare-earth nanomaterials resulting in the increased accumulation and retention in tumour tissue that was visualized by the localized enhancement of infrared signal intensity. Our findings lay the groundwork for a new generation of versatile, biomedical nanomaterials that can advance disease monitoring based on a pioneering infrared imaging technique.

598 citations


Journal ArticleDOI
TL;DR: Results indicate that gLuc-lactadherin labeling is useful for tracing exosomes in vivo and that B16-BL6 exosome-derived signals distributed first to the liver and then to the lungs after systemic administration.

538 citations


Journal ArticleDOI
TL;DR: It is reported, based on in vitro and in vivo studies, that the specificity of endothelial targeting can be enhanced further by engineering the shape of ligand-displaying nanoparticles.
Abstract: Vascular endothelium offers a variety of therapeutic targets for the treatment of cancer, cardiovascular diseases, inflammation, and oxidative stress. Significant research has been focused on developing agents to target the endothelium in diseased tissues. This includes identification of antibodies against adhesion molecules and neovascular expression markers or peptides discovered using phage display. Such targeting molecules also have been used to deliver nanoparticles to the endothelium of the diseased tissue. Here we report, based on in vitro and in vivo studies, that the specificity of endothelial targeting can be enhanced further by engineering the shape of ligand-displaying nanoparticles. In vitro studies performed using microfluidic systems that mimic the vasculature (synthetic microvascular networks) showed that rod-shaped nanoparticles exhibit higher specific and lower nonspecific accumulation under flow at the target compared with their spherical counterparts. Mathematical modeling of particle–surface interactions suggests that the higher avidity and specificity of nanorods originate from the balance of polyvalent interactions that favor adhesion and entropic losses as well as shear-induced detachment that reduce binding. In vivo experiments in mice confirmed that shape-induced enhancement of vascular targeting is also observed under physiological conditions in lungs and brain for nanoparticles displaying anti–intracellular adhesion molecule 1 and anti-transferrin receptor antibodies.

534 citations


Journal ArticleDOI
04 Jan 2013-ACS Nano
TL;DR: Proof-of-principle testing of the use of a dual drug/siRNA nanocarrier to overcome Dox resistance in a xenograft is provided and the first detailed analysis of the impact of heterogeneity in the tumor microenvironment on the efficacy of siRNA delivery in vivo is provided.
Abstract: We used a multifunctional mesoporous silica nanoparticle (MSNP) carrier to overcome doxorubicin (Dox) resistance in a multidrug resistant (MDR) human breast cancer xenograft by codelivering Dox and siRNA that targets the P-glycoprotein (Pgp) drug exporter. The Pgp siRNA selection from among a series of drug resistance targets was achieved by performing high throughput screening in a MDR breast cancer cell line, MCF-7/MDR. Following the establishment of a MCF-7/MDR xenograft model in nude mice, we demonstrated that a 50 nm MSNP, functionalized by a polyethyleneimine–polyethylene glycol (PEI-PEG) copolymer, provides protected delivery of stably bound Dox and Pgp siRNA to the tumor site. The effective biodistribution and reduced reticuloendothelial uptake, as a result of our nanocarrier design, allowed us to achieve an 8% enhanced permeability and retention effect at the tumor site. Compared to free Dox or the carrier loaded with either drug or siRNA alone, the dual delivery system resulted in synergistic in...

510 citations


Journal ArticleDOI
Huan-Ming Xiong1
TL;DR: The recent exciting progress on the biomedical applications of ZnO‐based nanomaterials is reviewed here, along with discussions on the advantages and limitations of these advanced materials and suggestions for improving methods.
Abstract: The last decade has seen significant achievements in biomedical diagnosis and therapy at the levels of cells and molecules. Nanoparticles with luminescent or magnetic properties are used as detection probes and drug carriers, both in vitro and in vivo. ZnO nanoparticles, due to their good biocompatibility and low cost, have shown promising potential in bioimaging and drug delivery. The recent exciting progress on the biomedical applications of ZnO-based nanomaterials is reviewed here, along with discussions on the advantages and limitations of these advanced materials and suggestions for improving methods.

420 citations


Journal ArticleDOI
11 Jan 2013-Science
TL;DR: The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the “diffraction-before-destruction” approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals.
Abstract: The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the “diffraction-before-destruction” approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals.

417 citations


Journal ArticleDOI
Kai Yang1, Hua Gong1, Xiaoze Shi1, Jianmei Wan1, Youjiu Zhang1, Zhuang Liu1 
TL;DR: This work sought to systematically investigate in vivo biodistribution and potential toxicity of as-made GO and a number of polyethylene glycol (PEG) functionalized GO derivatives with different sizes and surface coatings, after oral and intraperitoneal administration at high doses.

343 citations


Journal ArticleDOI
18 Dec 2013-PLOS ONE
TL;DR: It is demonstrated that plasma-activated medium also had an anti-tumor effect on chemo-resistant cells in vitro and in vivo and may contribute to a better patient prognosis in the future.
Abstract: Purpose Nonequilibrium atmospheric pressure plasma (NEAPP) therapy has recently been focused on as a novel medical practice. Using cells with acquired paclitaxel/cisplatin resistance, we elucidated effects of indirect NEAPP-activated medium (NEAPP-AM) exposure on cell viability and tumor growth in vitro and in vivo. Methods Using chronic paclitaxel/cisplatin-resistant ovarian cancer cells, we applied indirect NEAPP-exposed medium to cells and xenografted tumors in a mouse model. Furthermore, we examined the role of reactive oxygen species (ROS) or their scavengers in the above-mentioned EOC cells. Results We assessed the viability of NOS2 and NOS3 cells exposed to NEAPP-AM, which was prepared beforehand by irradiation with NEAPP for the indicated time. In NOS2 cells, viability decreased by approximately 30% after NEAPP-AM 120-sec treatment (P<0.01). The growth-inhibitory effects of NEAPP-AM were completely inhibited by N-acetyl cysteine treatment, while L-buthionine-[S, R]-sulfoximine, an inhibitor of the ROS scavenger used with NEAPP-AM, decreased cell viability by 85% after NEAPP-AM 60-sec treatment(P<0.05) and by 52% after 120 sec, compared to the control (P<0.01). In the murine subcutaneous tumor-formation model, NEAPP-AM injection resulted in an average inhibition of the NOS2 cell-inoculated tumor by 66% (P<0.05) and NOS2TR cell-inoculated tumor by 52% (P<0.05), as compared with the control. Conclusion We demonstrated that plasma-activated medium also had an anti-tumor effect on chemo-resistant cells in vitro and in vivo. Indirect plasma therapy is a promising treatment option for EOC and may contribute to a better patient prognosis in the future.

335 citations


Journal ArticleDOI
26 Jul 2013-ACS Nano
TL;DR: New approaches for size control synthesis of magnetic/upconversion fluorescent NaGdF4:Yb,Er nanocrystals and their applications for imaging tiny tumors in vivo are reported.
Abstract: Detection of early malignant tumors remains clinically difficult; developing ultrasensitive imaging agents is therefore highly demanded. Owing to the unusual magnetic and optical properties associated with f-electrons, rare-earth elements are very suitable for creating functional materials potentially useful for tumor imaging. Nanometer-sized particles offer such a platform with which versatile unique properties of the rare-earth elements can be integrated. Yet the development of rare-earth nanoparticle-based tumor probes suitable for imaging tiny tumors in vivo remains difficult, which challenges not only the physical properties of the nanoparticles but also the rationality of the probe design. Here we report new approaches for size control synthesis of magnetic/upconversion fluorescent NaGdF4:Yb,Er nanocrystals and their applications for imaging tiny tumors in vivo. By independently varying F–:Ln3+ and Na+:Ln3+ ratios, the size and shape regulation mechanisms were investigated. By replacing the oleic ac...

Journal ArticleDOI
TL;DR: In vivo photothermal ablation of tumor with excellent treatment efficacy was achieved and the concept of developing polyaniline-based nanoparticles can serve as a platform technology for the next generation of in vivo PTT agents.

Journal ArticleDOI
TL;DR: It is shown that the Nlrp3 inflammasome is activated in response to Leishmania infection and is important for the restriction of parasite replication both in macrophages and in vivo as demonstrated through the infection of inflammaome-deficient mice with Leishmaniasis.
Abstract: Parasites of the Leishmania genus are the causative agents of leishmaniasis in humans, a disease that affects more than 12 million people worldwide. These parasites replicate intracellularly in macrophages, and the primary mechanisms underlying host resistance involve the production of nitric oxide (NO). In this study we show that the Nlrp3 inflammasome is activated in response to Leishmania infection and is important for the restriction of parasite replication both in macrophages and in vivo as demonstrated through the infection of inflammasome-deficient mice with Leishmania amazonensis, Leishmania braziliensis and Leishmania infantum chagasi. Inflammasome-driven interleukin-1β (IL-1β) production facilitated host resistance to infection, as signaling through IL-1 receptor (IL-1R) and MyD88 was necessary and sufficient to trigger inducible nitric oxide synthase (NOS2)-mediated production of NO. In this manuscript we identify a major signaling platform for host resistance to Leishmania spp. infection and describe the molecular mechanisms underlying Leishmania-induced NO production.

Journal ArticleDOI
01 Oct 2013-ACS Nano
TL;DR: Improved tumor targeted delivery of doxorubicin (DOX) in 4T1 tumor-bearing mice after intravenous injection of DOX-loaded NOTA-mSiO2-PEG-TRC105 holds great potential for future image-guided drug delivery and targeted cancer therapy.
Abstract: Since the first use of biocompatible mesoporous silica (mSiO2) nanoparticles as drug delivery vehicles, in vivo tumor targeted imaging and enhanced anticancer drug delivery has remained a major challenge. In this work, we describe the development of functionalized mSiO2 nanoparticles for actively targeted positron emission tomography (PET) imaging and drug delivery in 4T1 murine breast tumor-bearing mice. Our structural design involves the synthesis, surface functionalization with thiol groups, PEGylation, TRC105 antibody (specific for CD105/endoglin) conjugation, and 64Cu-labeling of uniform 80 nm sized mSiO2 nanoparticles. Systematic in vivo tumor targeting studies clearly demonstrated that 64Cu-NOTA-mSiO2-PEG-TRC105 could accumulate prominently at the 4T1 tumor site via both the enhanced permeability and retention effect and TRC105-mediated binding to tumor vasculature CD105. As a proof-of-concept, we also demonstrated successful enhanced tumor targeted delivery of doxorubicin (DOX) in 4T1 tumor-bearin...

Journal ArticleDOI
TL;DR: A versatile nanoparticle (NP) platform to deliver a cisplatin prodrug and REV1/REV3L-specific siRNAs simultaneously to the same tumor cells and demonstrates the potency of the siRNA-containing NPs to knock down target genes efficiently both in vitro and in vivo.
Abstract: Cisplatin and other DNA-damaging chemotherapeutics are widely used to treat a broad spectrum of malignancies. However, their application is limited by both intrinsic and acquired chemoresistance. Most mutations that result from DNA damage are the consequence of error-prone translesion DNA synthesis, which could be responsible for the acquired resistance against DNA-damaging agents. Recent studies have shown that the suppression of crucial gene products (e.g., REV1, REV3L) involved in the error-prone translesion DNA synthesis pathway can sensitize intrinsically resistant tumors to chemotherapy and reduce the frequency of acquired drug resistance of relapsed tumors. In this context, combining conventional DNA-damaging chemotherapy with siRNA-based therapeutics represents a promising strategy for treating patients with malignancies. To this end, we developed a versatile nanoparticle (NP) platform to deliver a cisplatin prodrug and REV1/REV3L-specific siRNAs simultaneously to the same tumor cells. NPs are formulated through self-assembly of a biodegradable poly(lactide-coglycolide)-b-poly(ethylene glycol) diblock copolymer and a self-synthesized cationic lipid. We demonstrated the potency of the siRNA-containing NPs to knock down target genes efficiently both in vitro and in vivo. The therapeutic efficacy of NPs containing both cisplatin prodrug and REV1/REV3L-specific siRNAs was further investigated in vitro and in vivo. Quantitative real-time PCR results showed that the NPs exhibited a significant and sustained suppression of both genes in tumors for up to 3 d after a single dose. Administering these NPs revealed a synergistic effect on tumor inhibition in a human Lymph Node Carcinoma of the Prostate xenograft mouse model that was strikingly more effective than platinum monotherapy.

Journal ArticleDOI
15 Aug 2013-Blood
TL;DR: It is demonstrated that ruxolitinib significantly affects DC differentiation and function leading to impaired T-cell activation and the findings may also explain the outstanding anti-inflammatory and immunomodulating activity of JAK inhibitors currently used in the treatment of MF and autoimmune diseases.

Journal ArticleDOI
TL;DR: This study reports that particle size exerts great influence on the penetration and retention behavior of nanoparticles entering tumors, and defines an optimal smaller size for nanoparticles that maximizes their effective accumulation in tumor tissue.
Abstract: Nanoparticles offer potential as drug delivery systems for chemotherapeutics based on certain advantages of molecular drugs. In this study, we report that particle size exerts great influence on the penetration and retention behavior of nanoparticles entering tumors. On comparing gold-coated Au@tiopronin nanoparticles that were prepared with identical coating and surface properties, we found that 50 nanoparticles were more effective in all in vitro, ex vivo, and in vivo assays conducted using MCF-7 breast cells as a model system. Beyond superior penetration in cultured cell monolayers, 50 nm Au@tiopronin nanoparticles also penetrated more deeply into tumor spheroids ex vivo and accumulated more effectively in tumor xenografts in vivo after a single intravenous dose. In contrast, larger gold-coated nanoparticles were primarily localized in the periphery of the tumor spheroid and around blood vessels, hindering deep penetration into tumors. We found multicellular spheroids to offer a simple ex vivo tumor model to simulate tumor tissue for screening the nanoparticle penetration behavior. Taken together, our findings define an optimal smaller size for nanoparticles that maximizes their effective accumulation in tumor tissue.

Journal ArticleDOI
TL;DR: 3D models of EOCs better reflect the histological, biological, and molecular features of primary tumors than the same cells cultured using traditional 2D techniques; 3D in vitro models also exhibit different sensitivities to chemotherapeutic agents compared with 2D models, which may have a significant impact on the success of drug testing pipelines for EOC.

Journal ArticleDOI
TL;DR: GDC-0068 is a highly selective, orally bioavailable Akt kinase inhibitor that shows pharmacodynamic inhibition of Akt signaling and robust antitumor activity in human cancer cells in vitro and in vivo.
Abstract: Purpose: We describe the preclinical pharmacology and antitumor activity of GDC-0068, a novel highly selective ATP-competitive pan-Akt inhibitor currently in clinical trials for the treatment of human cancers. Experimental Design: The effect of GDC-0068 on Akt signaling was characterized using specific biomarkers of the Akt pathway, and response to GDC-0068 was evaluated in human cancer cell lines and xenograft models with various genetic backgrounds, either as a single agent or in combination with chemotherapeutic agents. Results: GDC-0068 blocked Akt signaling both in cultured human cancer cell lines and in tumor xenograft models as evidenced by dose-dependent decrease in phosphorylation of downstream targets. Inhibition of Akt activity by GDC-0068 resulted in blockade of cell-cycle progression and reduced viability of cancer cell lines. Markers of Akt activation, including high-basal phospho-Akt levels, PTEN loss, and PIK3CA kinase domain mutations, correlate with sensitivity to GDC-0068. Isogenic PTEN knockout also sensitized MCF10A cells to GDC-0068. In multiple tumor xenograft models, oral administration of GDC-0068 resulted in antitumor activity ranging from tumor growth delay to regression. Consistent with the role of Akt in a survival pathway, GDC-0068 also enhanced antitumor activity of classic chemotherapeutic agents. Conclusions: GDC-0068 is a highly selective, orally bioavailable Akt kinase inhibitor that shows pharmacodynamic inhibition of Akt signaling and robust antitumor activity in human cancer cells in vitro and in vivo . Our preclinical data provide a strong mechanistic rationale to evaluate GDC-0068 in cancers with activated Akt signaling. Clin Cancer Res; 19(7); 1760–72. ©2012 AACR .

Journal ArticleDOI
TL;DR: This model better detected in vivo drug-induced toxicity, including species-specific drug effects, when compared to monolayer hepatocyte cultures, and underline the importance of more complex and long lasting in vitro cell culture models that contain all liver cell types and allow repeated drug-treating for detection of in vivo-relevant adverse drug effects.

Journal ArticleDOI
TL;DR: In vivo histocompatibility study in mice indicates a muted immune response to subcutaneous SU-8 implants, comparable to that of FDA approved implant materials such as silicone elastomer, Buna-S and medical steel.

Journal ArticleDOI
TL;DR: RBC membrane-cloaked polymeric nanoparticles represent an emerging nanocarrier platform with extended circulation in vivo with receptor-specific targeting against model cancer cell lines through lipid-insertion method.
Abstract: RBC membrane-cloaked polymeric nanoparticles represent an emerging nanocarrier platform with extended circulation in vivo. A lipid-insertion method is employed to functionalize these nanoparticles without the need for direct chemical conjugation. Insertion of both folate and the nucleolin-targeting aptamer AS1411 shows receptor-specific targeting against model cancer cell lines.

Journal ArticleDOI
TL;DR: It is found that PFK15 causes a rapid induction of apoptosis in transformed cells, has adequate pharmacokinetic properties, suppresses the glucose uptake and growth of Lewis lung carcinomas in syngeneic mice, and yields antitumor effects in three human xenograft models of cancer in athymic mice that are comparable to U.S. Food and Drug Administration–approved chemotherapeutic agents.
Abstract: In human cancers, loss of PTEN, stabilization of hypoxia inducible factor-1α, and activation of Ras and AKT converge to increase the activity of a key regulator of glycolysis, 6-phosphofructo-2-kinase (PFKFB3). This enzyme synthesizes fructose 2,6-bisphosphate (F26BP), which is an activator of 6-phosphofructo-1-kinase, a key step of glycolysis. Previously, a weak competitive inhibitor of PFKFB3, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), was found to reduce the glucose metabolism and proliferation of cancer cells. We have synthesized 73 derivatives of 3PO and screened each compound for activity against recombinant PFKFB3. One small molecule, 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15), was selected for further preclinical evaluation of its pharmacokinetic, antimetabolic, and antineoplastic properties in vitro and in vivo. We found that PFK15 causes a rapid induction of apoptosis in transformed cells, has adequate pharmacokinetic properties, suppresses the glucose uptake and growth of Lewis lung carcinomas in syngeneic mice, and yields antitumor effects in three human xenograft models of cancer in athymic mice that are comparable to U.S. Food and Drug Administration-approved chemotherapeutic agents. As a result of this study, a synthetic derivative and formulation of PFK15 has undergone investigational new drug (IND)-enabling toxicology and safety studies. A phase I clinical trial of its efficacy in advanced cancer patients will initiate in 2013 and we anticipate that this new class of antimetabolic agents will yield acceptable therapeutic indices and prove to be synergistic with agents that disrupt neoplastic signaling.

Journal ArticleDOI
TL;DR: SPIO@DSPE-PEG/ICG NPs integrate multiple capabilities for effective tumor imaging and therapy and are very helpful for accurately interpreting the obtained images, identifying the size and location of the tumor, as well as guiding and monitoring the photothermal therapy through a single agent.

Journal ArticleDOI
TL;DR: Three aspects of cancer were chosen to be modeled based on their ability to resist anti-cancer drugs: 3D, multicellularity, and extracellular matrix (ECM) barrier, and it is demonstrated that the 3D heterospheroid model is more resistant to drug over 2D monolayer and homospheoid cultures.

Journal ArticleDOI
TL;DR: Neutral and cationic copper bis(thiosemicarbazone) complexes bearing methyl, phenyl, and hydrogen, on the diketo-backbone of the ligand have been synthesized and revealed that they are cytotoxic unlike the corresponding zinc complexes.
Abstract: Neutral and cationic copper bis(thiosemicarbazone) complexes bearing methyl, phenyl, and hydrogen, on the diketo-backbone of the ligand have been synthesized. All of them were characterized by spectroscopic methods and in three cases by X-ray crystallography. In vitro cytotoxicity studies revealed that they are cytotoxic unlike the corresponding zinc complexes. Copper complexes Cu(GTSC) and Cu(GTSCHCl) derived from glyoxal-bis(4-methyl-4-phenyl-3-thiosemicarbazone) (GTSCH(2)) are the most cytotoxic complexes against various human cancer cell lines, with a potency similar to that of the anticancer drug adriamycin and up to 1000 fold higher than that of the corresponding zinc complex. Tritiated thymidine incorporation assay revealed that Cu(GTSC) and Cu(GTSCHCl) inhibit DNA synthesis substantially. Cell cycle analyses showed that Cu(GTSC) and Cu(GTSCHCl) induce apoptosis in HCT116 cells. The Cu(GTSCHCl) complex caused distinct DNA cleavage and Topo II alpha inhibition unlike that for Cu(GTSC). In vivo administration of Cu(GTSC) significantly inhibits tumor growth in HCT116 xenografts in nude mice.

Journal ArticleDOI
TL;DR: A preliminary investigation of macroscopic polarimetric imaging of uterine cervix finds that retardation reached 60° in healthy regions, and disappeared in the anomalous regions of the other three ex vivo samples, and the depolarization power was largest in healthy areas, and lower in CINs and ectropion.
Abstract: We present a preliminary investigation of macroscopic polarimetric imaging of uterine cervix. Orthogonal state contrast (OSC) images of healthy and anomalous cervices have been taken in vivo at 550 nm. Four ex vivo cervix samples have been studied in full Muller polarimetry, at 550 nm and 700 nm, and characterized in detail by standard pathology. One sample was totally healthy, another one carried CIN lesions at very early stage (CIN1) in its visible exocervical region, while for the other two samples more advanced (CIN3) lesions were present, together with visible glandular epithelium (ectropion). Significant birefringence has been observed in the healthy regions of all six samples, both in vivo and ex vivo. Standard treatments of the Mueller images of the ex vivo samples allowed to quantify both retardation and depolarization. Retardation reached 60° in healthy regions, and disappeared in the anomalous regions of the other three ex vivo samples. The depolarization power was largest in healthy regions, and lower in CINs and ectropion. Possible origins of the observed effects are briefly discussed.

Journal ArticleDOI
TL;DR: The discovery of the first G9a and GLP in vivo chemical probe UNC0642, which not only maintains high in vitro and cellular potency, low cell toxicity, and excellent selectivity, but also displays improved in vivo PK properties, making it suitable for animal studies.
Abstract: Among epigenetic “writers”, “readers”, and “erasers”, the lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9me2) and nonhistone proteins, have been implicated in a variety of human diseases. A “toolkit” of well-characterized chemical probes will allow biological and disease hypotheses concerning these proteins to be tested in cell-based and animal models with high confidence. We previously discovered potent and selective G9a/GLP inhibitors including the cellular chemical probe UNC0638, which displays an excellent separation of functional potency and cell toxicity. However, this inhibitor is not suitable for animal studies due to its poor pharmacokinetic (PK) properties. Here, we report the discovery of the first G9a and GLP in vivo chemical probe UNC0642, which not only maintains high in vitro and cellular potency, low cell toxicity, and excellent selectivity, but also displays improved in vivo PK properties, making it suitable for animal studies.

Journal ArticleDOI
TL;DR: The results showed that the size of the silver nanoparticles did not affect their tissue distribution, and biological barriers, such as the blood–brain barrier and blood-testis barrier, seemed to play an important role in the silver clearance from these tissues.
Abstract: Silver nanoparticles are known to be distributed in many tissues after oral or inhalation exposure. Thus, understanding the tissue clearance of such distributed nanoparticles is very important to understand the behavior of silver nanoparticles in vivo. For risk assessment purposes, easy clearance indicates a lower overall cumulative toxicity. Accordingly, to investigate the clearance of tissue silver concentrations following oral silver nanoparticle exposure, Sprague–Dawley rats were assigned to 3 groups: control, low dose (100 mg/kg body weight), and high dose (500 mg/kg body weight), and exposed to two different sizes of silver nanoparticles (average diameter 10 and 25 nm) over 28 days. Thereafter, the rats were allowed to recover for 4 months. Regardless of the silver nanoparticle size, the silver content in most tissues gradually decreased during the 4-month recovery period, indicating tissue clearance of the accumulated silver. The exceptions were the silver concentrations in the brain and testes, which did not clear well, even after the 4-month recovery period, indicating an obstruction in transporting the accumulated silver out of these tissues. Therefore, the results showed that the size of the silver nanoparticles did not affect their tissue distribution. Furthermore, biological barriers, such as the blood–brain barrier and blood-testis barrier, seemed to play an important role in the silver clearance from these tissues.

Journal ArticleDOI
TL;DR: The finding that PLMC plus US inhibited tumor growth more effectively than PL plus US or PLMC without US, not only in vitro, but also in vivo suggests their potential use as a new targeted US chemotherapeutic approach to inhibit breast cancer growth.