scispace - formally typeset
Search or ask a question
Institution

Kent State University

EducationKent, Ohio, United States
About: Kent State University is a education organization based out in Kent, Ohio, United States. It is known for research contribution in the topics: Liquid crystal & Population. The organization has 10897 authors who have published 24607 publications receiving 720309 citations. The organization is also known as: Kent State & KSU.


Papers
More filters
Journal ArticleDOI
TL;DR: A systematic literature search found that among 74 FDA-registered studies, 31%, accounting for 3449 study participants, were not published, and the increase in effect size ranged from 11 to 69% for individual drugs and was 32% overall.
Abstract: Background Evidence-based medicine is valuable to the extent that the evidence base is complete and unbiased. Selective publication of clinical trials — and the outcomes within those trials — can lead to unrealistic estimates of drug effectiveness and alter the apparent risk–benefit ratio. Methods We obtained reviews from the Food and Drug Administration (FDA) for studies of 12 antidepressant agents involving 12,564 patients. We conducted a systematic literature search to identify matching publications. For trials that were reported in the literature, we compared the published outcomes with the FDA outcomes. We also compared the effect size derived from the published reports with the effect size derived from the entire FDA data set. Results Among 74 FDA-registered studies, 31%, accounting for 3449 study participants, were not published. Whether and how the studies were published were associated with the study outcome. A total of 37 studies viewed by the FDA as having positive results were published; 1 stu...

2,176 citations

Journal ArticleDOI
TL;DR: This review for the first time summarizes all the developed earth-abundant cocatalysts for photocatalytic H2- and O2-production half reactions as well as overall water splitting.
Abstract: Photocatalytic water splitting represents a promising strategy for clean, low-cost, and environmental-friendly production of H2 by utilizing solar energy. There are three crucial steps for the photocatalytic water splitting reaction: solar light harvesting, charge separation and transportation, and the catalytic H2 and O2 evolution reactions. While significant achievement has been made in optimizing the first two steps in the photocatalytic process, much less efforts have been put into improving the efficiency of the third step, which demands the utilization of cocatalysts. To date, cocatalysts based on rare and expensive noble metals are still required for achieving reasonable activity in most semiconductor-based photocatalytic systems, which seriously restricts their large-scale application. Therefore, seeking cheap, earth-abundant and high-performance cocatalysts is indispensable to achieve cost-effective and highly efficient photocatalytic water splitting. This review for the first time summarizes all the developed earth-abundant cocatalysts for photocatalytic H2- and O2-production half reactions as well as overall water splitting. The roles and functional mechanism of the cocatalysts are discussed in detail. Finally, this review is concluded with a summary, and remarks on some challenges and perspectives in this emerging area of research.

1,990 citations

Journal ArticleDOI
TL;DR: This monograph discusses 10 learning techniques that benefit learners of different ages and abilities and have been shown to boost students’ performance across many criterion tasks and even in educational contexts.
Abstract: Many students are being left behind by an educational system that some people believe is in crisis. Improving educational outcomes will require efforts on many fronts, but a central premise of this monograph is that one part of a solution involves helping students to better regulate their learning through the use of effective learning techniques. Fortunately, cognitive and educational psychologists have been developing and evaluating easy-to-use learning techniques that could help students achieve their learning goals. In this monograph, we discuss 10 learning techniques in detail and offer recommendations about their relative utility. We selected techniques that were expected to be relatively easy to use and hence could be adopted by many students. Also, some techniques (e.g., highlighting and rereading) were selected because students report relying heavily on them, which makes it especially important to examine how well they work. The techniques include elaborative interrogation, self-explanation, summarization, highlighting (or underlining), the keyword mnemonic, imagery use for text learning, rereading, practice testing, distributed practice, and interleaved practice. To offer recommendations about the relative utility of these techniques, we evaluated whether their benefits generalize across four categories of variables: learning conditions, student characteristics, materials, and criterion tasks. Learning conditions include aspects of the learning environment in which the technique is implemented, such as whether a student studies alone or with a group. Student characteristics include variables such as age, ability, and level of prior knowledge. Materials vary from simple concepts to mathematical problems to complicated science texts. Criterion tasks include different outcome measures that are relevant to student achievement, such as those tapping memory, problem solving, and comprehension. We attempted to provide thorough reviews for each technique, so this monograph is rather lengthy. However, we also wrote the monograph in a modular fashion, so it is easy to use. In particular, each review is divided into the following sections: General description of the technique and why it should work How general are the effects of this technique? 2a. Learning conditions 2b. Student characteristics 2c. Materials 2d. Criterion tasks Effects in representative educational contexts Issues for implementation Overall assessment The review for each technique can be read independently of the others, and particular variables of interest can be easily compared across techniques. To foreshadow our final recommendations, the techniques vary widely with respect to their generalizability and promise for improving student learning. Practice testing and distributed practice received high utility assessments because they benefit learners of different ages and abilities and have been shown to boost students' performance across many criterion tasks and even in educational contexts. Elaborative interrogation, self-explanation, and interleaved practice received moderate utility assessments. The benefits of these techniques do generalize across some variables, yet despite their promise, they fell short of a high utility assessment because the evidence for their efficacy is limited. For instance, elaborative interrogation and self-explanation have not been adequately evaluated in educational contexts, and the benefits of interleaving have just begun to be systematically explored, so the ultimate effectiveness of these techniques is currently unknown. Nevertheless, the techniques that received moderate-utility ratings show enough promise for us to recommend their use in appropriate situations, which we describe in detail within the review of each technique. Five techniques received a low utility assessment: summarization, highlighting, the keyword mnemonic, imagery use for text learning, and rereading. These techniques were rated as low utility for numerous reasons. Summarization and imagery use for text learning have been shown to help some students on some criterion tasks, yet the conditions under which these techniques produce benefits are limited, and much research is still needed to fully explore their overall effectiveness. The keyword mnemonic is difficult to implement in some contexts, and it appears to benefit students for a limited number of materials and for short retention intervals. Most students report rereading and highlighting, yet these techniques do not consistently boost students' performance, so other techniques should be used in their place (e.g., practice testing instead of rereading). Our hope is that this monograph will foster improvements in student learning, not only by showcasing which learning techniques are likely to have the most generalizable effects but also by encouraging researchers to continue investigating the most promising techniques. Accordingly, in our closing remarks, we discuss some issues for how these techniques could be implemented by teachers and students, and we highlight directions for future research.

1,989 citations

Journal ArticleDOI
TL;DR: This review gives a concise overview of the all-solid-state Z-scheme photocatalytic systems, including their composition, construction, optimization and applications, which have a huge potential to solve the current energy and environmental crises facing the modern industrial development.
Abstract: The current rapid industrial development causes the serious energy and environmental crises. Photocatalyts provide a potential strategy to solve these problems because these materials not only can directly convert solar energy into usable or storable energy resources but also can decompose organic pollutants under solar-light irradiation. However, the aforementioned applications require photocatalysts with a wide absorption range, long-term stability, high charge-separation efficiency and strong redox ability. Unfortunately, it is often difficult for a single-component photocatalyst to simultaneously fulfill all these requirements. The artificial heterogeneous Z-scheme photocatalytic systems, mimicking the natural photosynthesis process, overcome the drawbacks of single-component photocatalysts and satisfy those aforementioned requirements. Such multi-task systems have been extensively investigated in the past decade. Especially, the all-solid-state Z-scheme photocatalytic systems without redox pair have been widely used in the water splitting, solar cells, degradation of pollutants and CO2 conversion, which have a huge potential to solve the current energy and environmental crises facing the modern industrial development. Thus, this review gives a concise overview of the all-solid-state Z-scheme photocatalytic systems, including their composition, construction, optimization and applications.

1,949 citations

Journal ArticleDOI
TL;DR: In this paper, Mesoporous graphene doped with both N and S atoms (N-S-G) was prepared in one step and studied as an electrochemical catalyst for the oxygen reduction reaction (ORR).
Abstract: Doping duo: Mesoporous graphene doped with both N and S atoms (N-S-G) was prepared in one step and studied as an electrochemical catalyst for the oxygen reduction reaction (ORR). The catalyst shows excellent ORR performance comparable to that of commercial Pt/C. The outstanding activity of N-S-G results from both the large number and the synergistic effect of the dopant heteroatoms.

1,936 citations


Authors

Showing all 11015 results

NameH-indexPapersCitations
Russel J. Reiter1691646121010
Marco Costa1461458105096
Jong-Sung Yu124105172637
Mietek Jaroniec12357179561
M. Cherney11857249933
Qiang Xu11758550151
Lee Stuart Barnby11649443490
Martin Knapp106106748518
Christopher Shaw9777152181
B. V.K.S. Potukuchi9619030763
Vahram Haroutunian9442438954
W. E. Moerner9247835121
Luciano Rezzolla9039426159
Bruce A. Roe8929576365
Susan L. Brantley8835825582
Network Information
Related Institutions (5)
State University of New York System
78K papers, 2.9M citations

94% related

Rutgers University
159.4K papers, 6.7M citations

94% related

Arizona State University
109.6K papers, 4.4M citations

93% related

Michigan State University
137K papers, 5.6M citations

93% related

Pennsylvania State University
196.8K papers, 8.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202354
2022160
20211,121
20201,077
20191,005
20181,103