scispace - formally typeset
Search or ask a question
Institution

Kent State University

EducationKent, Ohio, United States
About: Kent State University is a education organization based out in Kent, Ohio, United States. It is known for research contribution in the topics: Liquid crystal & Population. The organization has 10897 authors who have published 24607 publications receiving 720309 citations. The organization is also known as: Kent State & KSU.


Papers
More filters
Journal ArticleDOI
C. Adler1, Zubayer Ahammed2, C. E. Allgower3, J. Amonett4  +296 moreInstitutions (29)
TL;DR: In this article, the authors show that four-particle correlation analyses can reliably separate flow and non-flow correlation signals, with the latter account for on average about 15 percent of the observed second-harmonic azimuthal correlation.
Abstract: Elliptic flow holds much promise for studying the early-time thermalization attained in ultrarelativistic nuclear collisions. Flow measurements also provide a means of distinguishing between hydrodynamic models and calculations which approach the low density (dilute gas) limit. Among the effects that can complicate the interpretation of elliptic flow measurements are azimuthal correlations that are unrelated to the reaction plane (non-flow correlations). Using data for Au + Au collisions at {radical}s{sub NN} = 130 GeV from the STAR TPC, it is found that four-particle correlation analyses can reliably separate flow and non-flow correlation signals. The latter account for on average about 15 percent of the observed second-harmonic azimuthal correlation, with the largest relative contribution for the most peripheral and the most central collisions. The results are also corrected for the effect of flow variations within centrality bins. This effect is negligible for all but the most central bin , where the correction to the elliptic flow is about a factor of two. A simple new method for two-particle flow analysis based on scalar products is described. An analysis based on the distribution of the magnitude of the flow vector is also described.

313 citations

Journal ArticleDOI
TL;DR: This Account conceptualized and rationally synthesized different light-driven chiral molecular switches that have very high helical twisting powers (HTPs) and exhibit large changes in HTP in different states, thereby enabling wide phototunability of the systems by the addition of very small amounts of the molecular switches into commercially available achiral LCs.
Abstract: ConspectusEndowing external, remote, and dynamic control to self-organized superstructures with desired functionalities is a principal driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystal (LC) media capable of self-organizing into optically tunable one-dimensional (1D) and three-dimensional (3D) superstructures represent such an elegant system. As a consequence, photoresponsive cholesteric LCs (CLCs), i.e., self-organized 1D helical superstructures, and LC blue phases (BPs), i.e., self-organized 3D periodic cubic lattices, are emerging as a new generation of multifunctional supramolecular 1D and 3D photonic materials in their own right because of their fundamental academic interest and technological significance. These smart stimuli-responsive materials can be facilely fabricated from achiral LC hosts by the addition of a small amount of a light-driven chiral molecular switch or motor. The photoresponsiveness of these mater...

312 citations

Journal ArticleDOI
TL;DR: It is proposed that, to varying degrees, decentering-related constructs reflect a common mental phenomenon subserved by three interrelated metacognitive processes: meta-awareness, disidentification from internal experience, and reduced reactivity to thought content.
Abstract: The capacity to shift experiential perspective-from within one's subjective experience onto that experience-is fundamental to being human. Scholars have long theorized that this metacognitive capacity-which we refer to as decentering-may play an important role in mental health. To help illuminate this mental phenomenon and its links to mental health, we critically examine decentering-related constructs and their respective literatures (e.g., self-distanced perspective, cognitive distancing, cognitive defusion). First, we introduce a novel metacognitive processes model of decentering. Specifically, we propose that, to varying degrees, decentering-related constructs reflect a common mental phenomenon subserved by three interrelated metacognitive processes: meta-awareness, disidentification from internal experience, and reduced reactivity to thought content. Second, we examine extant research linking decentering-related constructs and their underlying metacognitive processes to mental health. We conclude by proposing future directions for research that transcends decentering-related constructs in an effort to advance the field's understanding of this facet of human experience and its role in (mal)adaptation.

311 citations

Journal ArticleDOI
TL;DR: This work presents the first fully general-relativistic simulations of merging neutron-stars including quarks at finite temperatures that can be switched off consistently in the equation of state and shows that the phase transition leads to a very hot and dense quark core that, when it collapses to a black hole, produces a ringdown signal different from the hadronic one.
Abstract: Merging binaries of neutron-stars are not only strong sources of gravitational waves, but also have the potential of revealing states of matter at densities and temperatures not accessible in laboratories. A crucial and long-standing question in this context is whether quarks are deconfined as a result of the dramatic increase in density and temperature following the merger. We present the first fully general-relativistic simulations of merging neutron-stars including quarks at finite temperatures that can be switched off consistently in the equation of state. Within our approach, we can determine clearly what signatures a quark-hadron phase transition would leave in the gravitational-wave signal. We show that if after the merger the conditions are met for a phase transition to take place at several times nuclear saturation density, they would lead to a postmerger signal considerably different from the one expected from the inspiral, that can only probe the hadronic part of the equations of state, and to an anticipated collapse of the merged object. We also show that the phase transition leads to a very hot and dense quark core that, when it collapses to a black hole, produces a ringdown signal different from the hadronic one. Finally, in analogy with what is done in heavy-ion collisions, we use the evolution of the temperature and density in the merger remnant to illustrate the properties of the phase transition in a QCD phase diagram.

311 citations

Journal ArticleDOI
28 Apr 2020-Mbio
TL;DR: The types of tests available and how they might be useful in the face of a rapidly changing and never-before-experienced situation are explained.
Abstract: As we enter the second quarter of the COVID-19 pandemic, with testing for severe acute respiratory syndrome coronavirus 2 (SARS–CoV-2) increasingly available (though still limited and/or slow in some areas), we are faced with new questions and challenges regarding this novel virus. When to test? Whom to test? What to test? How often to test? And, what to do with test results? Since SARS–CoV-2 is a new virus, there is little evidence to fall back on for test utilization and diagnostic stewardship (1). Several points need to be considered to begin answering of these questions; specifically, what types of tests are available and under which circumstances are they useful? This understanding can help guide the use of testing at the local, regional, state, and national levels and inform those assessing the supply chain to ensure that needed testing is and continues to be available. Here, we explain the types of tests available and how they might be useful in the face of a rapidly changing and never-before-experienced situation. There are two broad categories of SARS–CoV-2 tests: those that detect the virus itself and those that detect the host’s response to the virus. Each will be considered separately. We must recognize that we are dealing with (i) a new virus, (ii) an unprecedented pandemic in modern times, and (iii) uncharted territory. With this in mind, in the absence of either proven effective therapy or a vaccine, diagnostic testing, which we have, becomes an especially important tool, informing patient management and potentially helping to save lives by limiting the spread …

310 citations


Authors

Showing all 11015 results

NameH-indexPapersCitations
Russel J. Reiter1691646121010
Marco Costa1461458105096
Jong-Sung Yu124105172637
Mietek Jaroniec12357179561
M. Cherney11857249933
Qiang Xu11758550151
Lee Stuart Barnby11649443490
Martin Knapp106106748518
Christopher Shaw9777152181
B. V.K.S. Potukuchi9619030763
Vahram Haroutunian9442438954
W. E. Moerner9247835121
Luciano Rezzolla9039426159
Bruce A. Roe8929576365
Susan L. Brantley8835825582
Network Information
Related Institutions (5)
State University of New York System
78K papers, 2.9M citations

94% related

Rutgers University
159.4K papers, 6.7M citations

94% related

Arizona State University
109.6K papers, 4.4M citations

93% related

Michigan State University
137K papers, 5.6M citations

93% related

Pennsylvania State University
196.8K papers, 8.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202354
2022160
20211,121
20201,077
20191,005
20181,103