scispace - formally typeset
Search or ask a question

Showing papers by "Queensland University of Technology published in 2019"


Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of the developed strategies for enhancing heterogeneous Fenton reactivity, mainly over the last decade, is presented, based on a comprehensive survey of previous studies.
Abstract: Heterogeneous Fenton reactions have gained widespread attention in removing recalcitrant organic contaminants as the reaction between solid Fenton catalysts and H2O2 can generate highly reactive hydroxyl radicals (HO[rad]). However, several drawbacks, such as the low-speed generation of Fe(II), high consumption of H2O2, and acidic reaction conditions (generally at ˜ pH 3), are always the core issues that hamper the large-scale application of heterogeneous Fenton reactions in environmental remediation. Thus, a large number of studies have been devoted to tackling these drawbacks, and this paper intends to comprehensively review the developed strategies for enhancing heterogeneous Fenton reactivity, mainly over the last decade. Based on a comprehensive survey of previous studies, we categorize these strategies according to their reaction mechanisms. For example, introducing additional electrons (e.g., from external electric fields, electron-rich materials, semiconductors, plasmonic materials, or doped metals) to heterogeneous Fenton catalysts can accelerate the generation of Fe(II); the in situ generation of H2O2 can be achieved by combining ultrasound, electricity, semiconductors, and iron-based catalysts in the system; and controlling the specific morphologies and exposed facets of heterogeneous Fenton catalysts can greatly promote the decomposition of H2O2. In addition, we briefly introduce some recent novel heterogeneous Fenton-like reactions that are of particular interest, including constructing dual reaction centers (i.e., the electron-poor center and the electron-rich center) and synthesizing single-atom catalysis-based heterogeneous Fenton-like catalysts. Moreover, this review article analyzes and compares the merits of each strategy for enhancing heterogeneous Fenton/Fenton-like reactions. We believe this review can motivate the construction of novel and efficient heterogeneous Fenton/Fenton-like systems and help readers choose proper Fenton/Fenton-like reaction systems for industrial applications.

643 citations


Journal ArticleDOI
TL;DR: In this paper, the authors focus on the analysis of recent research breakthroughs in the development of high electrochemical performance supercapacitors using transition metal oxides/hydroxides, sulfides, selenides and phosphides.

453 citations


Journal ArticleDOI
TL;DR: There is consistent, compelling evidence that physical activity plays a role in preventing many types of cancer and for improving longevity among cancer survivors, although the evidence related to higher risk of melanoma demonstrates the importance of sun safe practices while being physically active.
Abstract: Introduction The American College of Sports Medicine convened an International Multidisciplinary Roundtable on Exercise and Cancer in March 2018 to evaluate and translate the evidence linking physical activity and cancer prevention, treatment, and control. This article discusses findings from the Roundtable in relation to the biologic and epidemiologic evidence for the role of physical activity in cancer prevention and survival. Results The evidence supports that there are a number of biologically plausible mechanisms, whereby physical activity can influence cancer risk, and that physical activity is beneficial for the prevention of several types of cancer including breast, colon, endometrial, kidney, bladder, esophageal, and stomach. Minimizing time spent in sedentary behavior may also lower risk of endometrial, colon and lung cancers. Conversely, physical activity is associated with higher risk of melanoma, a serious form of skin cancer. Further, physical activity before and after a cancer diagnosis is also likely to be relevant for improved survival for those diagnosed with breast and colon cancer; with data suggesting that postdiagnosis physical activity provides greater mortality benefits than prediagnosis physical activity. Conclusions Collectively, there is consistent, compelling evidence that physical activity plays a role in preventing many types of cancer and for improving longevity among cancer survivors, although the evidence related to higher risk of melanoma demonstrates the importance of sun safe practices while being physically active. Together, these findings underscore the importance of physical activity in cancer prevention and control. Fitness and public health professionals and health care providers worldwide are encouraged to spread the message to the general population and cancer survivors to be physically active as their age, abilities, and cancer status will allow.

387 citations


Journal ArticleDOI
TL;DR: In this article, a systematic review of the smart and sustainable cities literature is presented, which highlights the need for a post-anthropocentric approach in practice and policymaking for the development of truly smart cities.

386 citations



Journal ArticleDOI
TL;DR: The authors provided a systematic review of the literature on the theoretical foundations, measurement, antecedents, and outcomes of entrepreneurial selfefficacy, and work which treated ESE as a moderator.

329 citations


Journal ArticleDOI
09 Oct 2019
TL;DR: In this article, the authors present a roadmap that outlines how citizen science can be integrated into the formal sustainable development goals reporting mechanisms, which will require leadership from the United Nations, innovation from National Statistical Offices and focus from the citizen-science community to identify the indicators for which citizen scientists can make a real contribution.
Abstract: Traditional data sources are not sufficient for measuring the United Nations Sustainable Development Goals. New and non-traditional sources of data are required. Citizen science is an emerging example of a non-traditional data source that is already making a contribution. In this Perspective, we present a roadmap that outlines how citizen science can be integrated into the formal Sustainable Development Goals reporting mechanisms. Success will require leadership from the United Nations, innovation from National Statistical Offices and focus from the citizen-science community to identify the indicators for which citizen science can make a real contribution.

324 citations


Journal ArticleDOI
TL;DR: A GWAS from the Psychiatric Genomics Consortium is reported in which two risk loci in European ancestry and one locus in African ancestry individuals are identified and it is found that PTSD is genetically correlated with several other psychiatric traits.
Abstract: The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5-20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson's disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations.

305 citations


Journal ArticleDOI
04 Apr 2019-Energies
TL;DR: There is an outstanding rise in the accuracy, robustness, precision and generalization ability of the ML models in energy systems using hybrid ML models.
Abstract: Machine learning (ML) models have been widely used in the modeling, design and prediction in energy systems. During the past two decades, there has been a dramatic increase in the advancement and application of various types of ML models for energy systems. This paper presents the state of the art of ML models used in energy systems along with a novel taxonomy of models and applications. Through a novel methodology, ML models are identified and further classified according to the ML modeling technique, energy type, and application area. Furthermore, a comprehensive review of the literature leads to an assessment and performance evaluation of the ML models and their applications, and a discussion of the major challenges and opportunities for prospective research. This paper further concludes that there is an outstanding rise in the accuracy, robustness, precision and generalization ability of the ML models in energy systems using hybrid ML models. Hybridization is reported to be effective in the advancement of prediction models, particularly for renewable energy systems, e.g., solar energy, wind energy, and biofuels. Moreover, the energy demand prediction using hybrid models of ML have highly contributed to the energy efficiency and therefore energy governance and sustainability.

300 citations


Journal ArticleDOI
TL;DR: In this article, a critical review of factors affecting the release from fabrics of microfibres, and of the risks for impacts on ecological systems and potentially on human health is presented, with the potential to include a metric for microplastic pollution in tools that have been developed to quantify the environmental performance of apparel and home textiles.

299 citations


Journal ArticleDOI
TL;DR: In this article, the degradation of polycaprolactone (PCL) copolymers and its composites has been extensively studied in a range of biomedical applications, exploring the role of the polymer structure and form, radical interactions, temperature, pH, enzymatic activity, and cellular phagocytosis.

Journal ArticleDOI
TL;DR: The current understanding of biofilm antibiotic tolerance mechanisms is reviewed and an overview ofBiofilm remediation strategies is provided, focusing primarily on the most promising biofilm eradication agents and approaches.
Abstract: Most free-living bacteria can attach to surfaces and aggregate to grow into multicellular communities encased in extracellular polymeric substances called biofilms. Biofilms are recalcitrant to antibiotic therapy and a major cause of persistent and recurrent infections by clinically important pathogens worldwide (e.g., Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus). Currently, most biofilm remediation strategies involve the development of biofilm-inhibition agents, aimed at preventing the early stages of biofilm formation, or biofilm-dispersal agents, aimed at disrupting the biofilm cell community. While both strategies offer some clinical promise, neither represents a direct treatment and eradication strategy for established biofilms. Consequently, the discovery and development of biofilm eradication agents as comprehensive, stand-alone biofilm treatment options has become a fundamental area of research. Here we review our current understanding of biofilm antibiotic tolerance mechanisms and provide an overview of biofilm remediation strategies, focusing primarily on the most promising biofilm eradication agents and approaches. Many of these offer exciting prospects for the future of biofilm therapeutics for a large number of infections that are currently refractory to conventional antibiotics.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that metal-free graphitic carbon nitride (g-C3N4) can be simultaneously co-doped with S, P and O nonmetal-atoms and exfoliated into ultrathin 2D nanosheets with a thickness of ∼3nm by a simple, sequential thermal synthesis.
Abstract: Recently, metal-free graphitic carbon nitride (g-C3N4) has been recognized as a potential candidate for high-performance photocatalytic hydrogen production while challenges still remain due to poor electronic properties and limited surface active sites. We demonstrate that g-C3N4 can be simultaneously co-doped with S, P and O nonmetal-atoms and exfoliated into ultrathin 2D nanosheets with a thickness of ∼3 nm by a simple, sequential thermal synthesis. The multi-atoms doping and nanostructure modulation remarkably enhanced the photocatalytic hydrogen production under illumination, with the optimal H2 evolution rate reaching 2480 μmol g−1 h−1. First-principle calculations and experimental evidences suggest that, upon elemental doping within the g-C3N4 framework, S atoms occupied the interstitial sites and P and O atoms replaced the C and N atoms, respectively. Consequently, photo-induced charge transfer and separation significantly improved owing to the construction of a more favorable charge transfer pathway. Furthermore, introducing heteroatoms into the structure of g-C3N4 narrowed the bandgap and negatively shifted the conduction band edge, leading to extended visible-light absorption and stronger electron reducibility for subsequent H2 production. Importantly, the in-situ generated 2D g-C3N4 nanosheets exhibited more catalytic surface sites, which was highly beneficial to the photocatalytic water splitting.

Book ChapterDOI
01 Jan 2019
TL;DR: In this section, the types of signals from inertial sensors, in particular, the accelerometer are examined using the basics of sampling and digital theory.
Abstract: In this section, we examine the types of signals from inertial sensors, in particular, the accelerometer using the basics of sampling and digital theory.

Journal ArticleDOI
TL;DR: The different siRNA nanocarrier systems for chronic respiratory diseases, for safe and effective delivery are discussed, and siRNA mediated pro‐inflammatory gene or miRNA targeting approach can be a useful approach in combating chronic respiratory inflammatory conditions.
Abstract: Lung diseases are the leading cause of mortality worldwide. The currently available therapies are not sufficient, leading to the urgent need for new therapies with sustained anti-inflammatory effects. Small/short or silencing interfering RNA (siRNA) has potential therapeutic implications through post-transcriptional downregulation of the target gene expression. siRNA is essential in gene regulation, so is more favorable over other gene therapies due to its small size, high specificity, potency, and no or low immune response. In chronic respiratory diseases, local and targeted delivery of siRNA is achieved via inhalation. The effectual delivery can be attained by the generation of aerosols via inhalers and nebulizers, which overcomes anatomical barriers, alveolar macrophage clearance and mucociliary clearance. In this review, we discuss the different siRNA nanocarrier systems for chronic respiratory diseases, for safe and effective delivery. siRNA mediated pro-inflammatory gene or miRNA targeting approach can be a useful approach in combating chronic respiratory inflammatory conditions and thus providing sustained drug delivery, reduced therapeutic dose, and improved patient compliance. This review will be of high relevance to the formulation, biological and translational scientists working in the area of respiratory diseases.

Journal ArticleDOI
TL;DR: In this paper, a permissioned energy blockchain system is introduced to implement secure charging services for EVs with the execution of smart contracts, and a reputation-based delegated Byzantine fault tolerance consensus algorithm is proposed to efficiently achieve the consensus in the permissioned blockchain.
Abstract: The smart community (SC), as an important part of the Internet of Energy (IoE), can facilitate integration of distributed renewable energy sources and electric vehicles (EVs) in the smart grid. However, due to the potential security and privacy issues caused by untrusted and opaque energy markets, it becomes a great challenge to optimally schedule the charging behaviors of EVs with distinct energy consumption preferences in SC. In this paper, we propose a contract-based energy blockchain for secure EV charging in SC. First, a permissioned energy blockchain system is introduced to implement secure charging services for EVs with the execution of smart contracts. Second, a reputation-based delegated Byzantine fault tolerance consensus algorithm is proposed to efficiently achieve the consensus in the permissioned blockchain. Third, based on the contract theory, the optimal contracts are analyzed and designed to satisfy EVs’ individual needs for energy sources while maximizing the operator’s utility. Furthermore, a novel energy allocation mechanism is proposed to allocate the limited renewable energy for EVs. Finally, extensive numerical results are carried out to evaluate and demonstrate the effectiveness and efficiency of the proposed scheme through comparison with other conventional schemes.

Journal ArticleDOI
01 Sep 2019
TL;DR: In this paper, a high-throughput screening of catalysts for N2 reduction among (nitrogen-doped) graphene-supported single atom catalysts is performed based on a general two-step strategy.
Abstract: Electrocatalytic or photocatalytic N2 reduction holds great promise for green and sustainable NH3 production under ambient conditions, where an efficient catalyst plays a crucial role but remains a long‐standing challenge. Here, a high‐throughput screening of catalysts for N2 reduction among (nitrogen‐doped) graphene‐supported single atom catalysts is performed based on a general two‐step strategy. 10 promising candidates with excellent performance are extracted from 540 systems. Most strikingly, a single W atom embedded in graphene with three C atom coordination (W1C3) exhibits the best performance with an extremely low onset potential of 0.25 V. This study not only provides a series of promising catalysts for N2 fixation, but also paves a new way for the rational design of catalysts for N2 fixation under ambient conditions.

Journal ArticleDOI
TL;DR: Preclinical and clinical evidence for EMP is outlined and strategies to address the complexities of therapeutically targeting the EMP process that give consideration to its spatially and temporally divergent roles in metastasis are highlighted, with the view that this will yield a potent and broad class of therapeutic agents.
Abstract: Experimental evidence accumulated over decades has implicated epithelial–mesenchymal plasticity (EMP), which collectively encompasses epithelial–mesenchymal transition and the reverse process of mesenchymal–epithelial transition, in tumour metastasis, cancer stem cell generation and maintenance, and therapeutic resistance. However, the dynamic nature of EMP processes, the apparent need to reverse mesenchymal changes for the development of macrometastases and the likelihood that only minor cancer cell subpopulations exhibit EMP at any one time have made such evidence difficult to accrue in the clinical setting. In this Perspectives article, we outline the existing preclinical and clinical evidence for EMP and reflect on recent controversies, including the failure of initial lineage-tracing experiments to confirm a major role for EMP in dissemination, and discuss accumulating data suggesting that epithelial features and/or a hybrid epithelial–mesenchymal phenotype are important in metastasis. We also highlight strategies to address the complexities of therapeutically targeting the EMP process that give consideration to its spatially and temporally divergent roles in metastasis, with the view that this will yield a potent and broad class of therapeutic agents. In this Perspectives article, the authors outline the preclinical and clinical evidence for epithelial–mesenchymal plasticity (EMP) in cancer progression and metastasis, focusing on recent challenges and controversies, and highlight strategies to therapeutically target the EMP process.

Journal ArticleDOI
TL;DR: In this article, a comprehensive survey of the literature regarding various types of degradation of polyurethane elastomers, including photo-, thermal, ozonolytic, hydrolytic, chemical, enzymatic, in-vivo/in-vitro oxidative, biological, and mechanical degradation, is presented.

Journal ArticleDOI
TL;DR: It is reported that VO functions in a more complicated way in PEC process than previously reported, and improved bulk conductivity and surface catalysis are beneficial for bulk charge transfer and surface charge consumption while interfacial charge transfer deteriorates because of recombination through VO -induced trap states at the S-E interface.
Abstract: Oxygen vacancy (VO) engineering is an effective method to tune the photoelectrochemical (PEC) performance, but the influence of VO on photoelectrodes is not well understood. Using hematite as a prototype, we herein report that VO functions in a more complicated way in PEC process than previously reported. Through a comprehensive analysis of the key charge transfer and surface reaction steps in PEC processes on a hematite photoanode, we clarify that VO can facilitate surface electrocatalytic processes while leading to severe interfacial recombination at the semiconductor/electrolyte (S‐E) interface, in addition to the well‐reported improvements in bulk conductivity. The improved bulk conductivity and surface catalysis are beneficial for bulk charge transfer and surface charge consumption while interfacial charge transfer deteriorates because of recombination through VO‐induced trap states at the S‐E interface.

Journal ArticleDOI
TL;DR: A strain-driven 90° lattice rotation is found in the magnetic VSSe monolayer with an extremely high reversal strain, indicating an intrinsic ferroelasticity and the combination of piezoelectricity and valley polarization make magnetic 2D Janus VSSe a tantalizing material for potential applications in nanoelectronics, optoelectronic, and valleytronics.
Abstract: Inspired by recent experiments on the successful fabrication of monolayer Janus transition-metal dichalcogenides [Lu, A.-Y.; Nat. Nanotechnol. 2017, 12, (8), 744 and ferromagnetic VSe2 [Bonilla, M.; Nat. Nanotechnol. 2018, 13, (4), 289], we predict a highly stable room-temperature ferromagnetic Janus monolayer (VSSe) by density functional theory methods and further confirmed the stability by a global minimum search with the particle-swarm optimization method. The VSSe monolayer exhibits a large valley polarization due to the broken space- and time-reversal symmetry. Moreover, its low symmetry C3v point group results in giant in-plane piezoelectric polarization. Most interestingly, a strain-driven 90° lattice rotation is found in the magnetic VSSe monolayer with an extremely high reversal strain (73%), indicating an intrinsic ferroelasticity. The combination of piezoelectricity and valley polarization make magnetic 2D Janus VSSe a tantalizing material for potential applications in nanoelectronics, optoelec...

Journal ArticleDOI
TL;DR: There is no set prescription and total weekly dosage that would be considered evidence-based for all cancer patients, so targeted exercise prescription is needed to ensure greatest benefit in the short and longer term, with low risk of harm.

Journal ArticleDOI
TL;DR: A panoramic review of recent advances in graphene-based electrocatalysts is presented, covering various advanced synthetic strategies, microstructural characterizations, and the applications of such materials in HER electrocatalysis.
Abstract: Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power resource, has become an important trend in the development of sustainable energy-production and energy-consumption systems. In this regard, the electrocatalytic hydrogen evolution reaction (HER) provides an efficient and clean pathway for the mass production of hydrogen fuel and has motivated the design and construction of highly active HER electrocatalysts of an acceptable cost. In particular, graphene-based electrocatalysts commonly exhibit an enhanced HER performance owing to their distinctive structural merits, including a large surface area, high electrical conductivity, and good chemical stability. Considering the rapidly growing research enthusiasm for this topic over the last several years, herein, a panoramic review of recent advances in graphene-based electrocatalysts is presented, covering various advanced synthetic strategies, microstructural characterizations, and the applications of such materials in HER electrocatalysis. Lastly, future perspectives on the challenges and opportunities awaiting this emerging field are proposed and discussed.

Journal ArticleDOI
TL;DR: The importance of surface properties in cell function is discussed, recent methods for surface modifications are systematically highlighted, and the impact of bulk material properties on the cellular responses is briefly reviewed.
Abstract: Surface interaction at the biomaterial–cell interface is essential for a variety of cellular functions, such as adhesion, proliferation, and differentiation. Nevertheless, changes in the biointerface enable to trigger specific cell signaling and result in different cellular responses. In order to manufacture biomaterials with higher functionality, biomaterials containing immobilized bioactive ligands have been widely introduced and employed for tissue engineering and regenerative medicine applications. Moreover, a number of physical and chemical strategies have been used to improve the functionality of biomaterials and specifically at the material interface. Here, the interactions between materials and cells at the interface levels are described. Then, the importance of surface properties in cell function is discussed and recent methods for surface modifications are systematically highlighted. Additionally, the impact of bulk material properties on the cellular responses is briefly reviewed.

Journal ArticleDOI
Gaya K. Amarasinghe1, María A. Ayllón2, Yīmíng Bào3, Christopher F. Basler4, Sina Bavari5, Kim R. Blasdell6, Thomas Briese7, Paul Brown, Alexander Bukreyev8, Anne Balkema-Buschmann9, Ursula J. Buchholz10, Camila Chabi-Jesus11, Kartik Chandran12, Chiara Chiapponi, Ian Crozier10, Rik L. de Swart13, Ralf G. Dietzgen14, Olga Dolnik15, Jan Felix Drexler16, Ralf Dürrwald17, William G. Dundon18, W. Paul Duprex19, John M. Dye5, Andrew J. Easton20, Anthony R. Fooks, Pierre Formenty21, Ron A. M. Fouchier13, Juliana Freitas-Astúa22, Anthony Griffiths23, Roger Hewson24, Masayuki Horie25, Timothy H. Hyndman26, Dàohóng Jiāng27, E. W. Kitajima28, Gary P. Kobinger29, Hideki Kondō30, Gael Kurath31, Ivan V. Kuzmin32, Robert A. Lamb33, Antonio Lavazza, Benhur Lee34, Davide Lelli, Eric M. Leroy35, Jiànróng Lǐ36, Piet Maes37, Shin-Yi Lee Marzano38, Ana Moreno, Elke Mühlberger23, Sergey V. Netesov39, Norbert Nowotny40, Norbert Nowotny41, Are Nylund42, Arnfinn Lodden Økland42, Gustavo Palacios5, Bernadett Pályi, Janusz T. Paweska, Susan Payne43, Alice Prosperi, Pedro Luis Ramos-González11, Bertus K. Rima44, Paul A. Rota45, Dennis Rubbenstroth9, Mǎng Shī46, Peter Simmonds47, Sophie J. Smither48, Enrica Sozzi, Kirsten Spann49, Mark D. Stenglein50, David M. Stone, Ayato Takada51, Robert B. Tesh8, Keizō Tomonaga25, Noël Tordo52, Jonathan S. Towner45, Bernadette G. van den Hoogen13, Nikos Vasilakis8, Victoria Wahl, Peter J. Walker14, Lin-Fa Wang53, Anna E. Whitfield54, John V. Williams19, F. Murilo Zerbini55, Tāo Zhāng3, Yong-Zhen Zhang56, Yong-Zhen Zhang57, Jens H. Kuhn10 
Washington University in St. Louis1, Technical University of Madrid2, Beijing Institute of Genomics3, Georgia State University4, United States Army Medical Research Institute of Infectious Diseases5, Commonwealth Scientific and Industrial Research Organisation6, Columbia University7, University of Texas Medical Branch8, Friedrich Loeffler Institute9, National Institutes of Health10, Instituto Biológico11, Albert Einstein College of Medicine12, Erasmus University Rotterdam13, University of Queensland14, University of Marburg15, Humboldt University of Berlin16, Robert Koch Institute17, International Atomic Energy Agency18, University of Pittsburgh19, University of Warwick20, World Health Organization21, Empresa Brasileira de Pesquisa Agropecuária22, Boston University23, Public Health England24, Kyoto University25, Murdoch University26, Huazhong Agricultural University27, University of São Paulo28, Laval University29, Okayama University30, United States Geological Survey31, United States Department of Agriculture32, Northwestern University33, Icahn School of Medicine at Mount Sinai34, Institut de recherche pour le développement35, Ohio State University36, Katholieke Universiteit Leuven37, South Dakota State University38, Novosibirsk State University39, University of Veterinary Medicine Vienna40, University of Medicine and Health Sciences41, University of Bergen42, Texas A&M University43, Queen's University Belfast44, Centers for Disease Control and Prevention45, University of Sydney46, University of Oxford47, Defence Science and Technology Laboratory48, Queensland University of Technology49, Colorado State University50, Hokkaido University51, Pasteur Institute52, National University of Singapore53, North Carolina State University54, Universidade Federal de Viçosa55, Fudan University56, Chinese Center for Disease Control and Prevention57
TL;DR: The updated taxonomy of the order Mononegavirales is presented as now accepted by the International Committee on Taxonomy of Viruses (ICTV).
Abstract: In February 2019, following the annual taxon ratification vote, the order Mononegavirales was amended by the addition of four new subfamilies and 12 new genera and the creation of 28 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).

Proceedings ArticleDOI
01 Oct 2019
TL;DR: This work proposes a novel formulation that permits the use of implicit representations of curves and surfaces, of arbitrary topology, as individual layers in Neural Network architectures with end-to-end trainability, and proposes to represent the output as an oriented level set of a continuous and discretised embedding function.
Abstract: Implicit shape representations, such as Level Sets, provide a very elegant formulation for performing computations involving curves and surfaces. However, including implicit representations into canonical Neural Network formulations is far from straightforward. This has consequently restricted existing approaches to shape inference, to significantly less effective representations, perhaps most commonly voxels occupancy maps or sparse point clouds. To overcome this limitation we propose a novel formulation that permits the use of implicit representations of curves and surfaces, of arbitrary topology, as individual layers in Neural Network architectures with end-to-end trainability. Specifically, we propose to represent the output as an oriented level set of a continuous and discretised embedding function. We investigate the benefits of our approach on the task of 3D shape prediction from a single image; and demonstrate its ability to produce a more accurate reconstruction compared to voxel-based representations. We further show that our model is flexible and can be applied to a variety of shape inference problems.

Journal ArticleDOI
TL;DR: This paper is intended to sum up the latest research results and achievements made in recent years in the interface bonding property, mechanical properties, and shape precision promotion of FDM 3D-printed PLA parts as well as the functional expansion of the PLA parts based on vast domestic and overseas literature.
Abstract: Different from other 3D printing techniques such as selective laser sintering (SLS), stereolithography (SLA), three-dimensional printing (3DP), and laminated object manufacturing (LOM), the fused deposition modeling (FDM) technology is widely used in aerospace, automobile making, bio-medicals, smart home, stationery and training aids, and creative gifts for its easy use, simple operation, and low cost. The polylactic acid (PLA) is a material most extensively applied in FDM technology for its low melting point, non-poison, non-irritation, and sound biocompatibility. The FDM 3D-printed PLA parts are a research hotspot in the 3D printing field. This paper is intended to sum up the latest research results and achievements made in recent years in the interface bonding property, mechanical properties, and shape precision promotion of FDM 3D-printed PLA parts as well as the functional expansion of the PLA parts based on vast domestic and overseas literature. The literature research collection focuses on the following two aspects: one is the macroscopic technical research on the optimal settings of key technological parameters; the other one is the PLA modification research on improvement of cross-linking state and crystallinity of PLA molecular chains, carbon reinforced phase modification of PLA, and PLA functional compound modification. The researches in the two aspects are of importance in improving whole properties, enhancing functional applications, and expanding and enriching the applications of FDM 3D-printed PLA parts. This paper is expected to give some helps and references to the researchers who are specializing in the 3D printing field.


Journal ArticleDOI
TL;DR: A cobalt-containing metal-organic framework using adenine as a ligand was synthesized and pyrolyzed without any other precursors, forming a cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube framework (Co@N-CNTF) as discussed by the authors.
Abstract: Developing active and stable electrocatalysts of earth-abundant elements towards the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) still remains a crucial challenge. Herein, a cobalt-containing metal-organic framework using adenine as a ligand was synthesized and pyrolyzed without any other precursors, forming a cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube framework (Co@N-CNTF). Due to the abundant active sites of homogeneously distributed cobalt nanoparticles within nitrogen-doped graphitic layers, the resultant Co@N-CNTF catalysts exhibit an efficient and stable electrocatalytic performance as a tri-functional catalyst towards the ORR, OER and HER, including a high half-wave potential of 0.81 V vs. RHE for the ORR, and a low overpotential at 10 mA cm -2 for the OER (0.35 V) and HER (0.22 V). As a proof-of-concept, the Co@N-CNTF as an OER/HER bifunctional catalyst for full water splitting affords an alkaline electrolyzer with 10 mA cm -2 under a stable voltage of 1.71 V. Moreover, an integrated unit of a water-splitting electrolyzer using the Co@N-CNTF catalysts, which is powered with a rechargeable Zn-air battery using the Co@N-CNTF as an ORR/OER bifunctional catalyst on air electrodes, can operate under ambient conditions with high cycling stability, demonstrating the viability and efficiency of the self-powered water-splitting system.

Journal ArticleDOI
TL;DR: In this paper, the formation mechanisms, characteristics, interactions, and environmental applications of surface-bound EPFRs in biochars are reviewed, and new and important insights into the fate and emerging applications of EPFR-mediated removal of organics/inorganics by bio-char are provided.