scispace - formally typeset
Search or ask a question
Institution

State University of New York System

EducationAlbany, New York, United States
About: State University of New York System is a education organization based out in Albany, New York, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 54077 authors who have published 78070 publications receiving 2985160 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A procedure for earthquake resistant design is developed to limit the potential damage of buildings to a tolerable level as discussed by the authors, based on the damage model developed earlier (Park and Ang, 1984) in which structural damage is expressed as a function of the maximum deformation and dissipated hysteretic energy.
Abstract: A procedure for earthquake‐resistant design is developed to limit the potential damage of buildings to a tolerable level The procedure is based on the damage model developed earlier (Park and Ang, 1984) in which structural damage is expressed as a function of the maximum deformation and dissipated hysteretic energy The tolerable degree of damage is defined on the basis of calibration with observed damages from past major earthquakes The design method is examined in the context of reliability

399 citations

Journal ArticleDOI
TL;DR: The fibroblast growth factor receptors (FGFRs) have previously been identified in chicken, mouse, and human and have been shown to contain an extracellular domain with either two or three immunoglobulin-like domains, a transmembrane domain, and a cytoplasmic tyrosine kinase domain this article.
Abstract: The fibroblast growth factors are a family of polypeptide growth factors involved in a variety of activities including mitogenesis, angiogenesis, and wound healing. Fibroblast growth factor receptors (FGFRs) have previously been identified in chicken, mouse, and human and have been shown to contain an extracellular domain with either two or three immunoglobulin-like domains, a transmembrane domain, and a cytoplasmic tyrosine kinase domain. We have isolated a human cDNA for another tyrosine kinase receptor that is highly homologous to the previously described FGFR. Expression of this receptor cDNA in COS cells directs the expression of a 125-kDa glycoprotein. We demonstrate that this cDNA encodes a biologically active receptor by showing that human acidic and basic fibroblast growth factors activate this receptor as measured by 45Ca2+ efflux assays. These data establish the existence of an additional member of the FGFR family that we have named FGFR-3.

399 citations

Journal ArticleDOI
TL;DR: The positional firing of MEC cells is more “sensory bound” than hippocampal cells, and the ability to discriminate different environments, while present in the hippocampus, is not yet present in its input from MEC.
Abstract: Hippocampal place cells in the rat are so named because they fire predominantly within circumscribed regions of the environment. This study describes the positional firing properties of cells afferent to hippocampal place cells, in superficial layers of medial entorhinal cortex (MEC). MEC cells in these layers project to the hippocampus via the perforant path and, along with lateral entorhinal cells, are the sole route by which cortical information reaches the hippocampus. MEC cells were recorded from rats while they retrieved pellets in simple geometric enclosures. The behavioral task as well as procedures for data collection and analysis were the same used in previous studies on hippocampal place cells (e.g., Muller et al., 1987) in order to facilitate the direct comparison between hippocampal and entorhinal cells. The firing patterns of MEC cells show pronounced locational variations reminiscent of hippocampal firing fields, but with a lower signal-to-noise ratio. While noisy, MEC firing patterns are stationary in time as evidenced by their reproducibility, and the improvement in spatial signal with long-duration recordings. Furthermore, MEC firing patterns are not due to variations in the rat's behavior. Taken together, these data show that the positional firing variations in MEC cells are due to the location-specificity of MEC cells. These and additional data lead us to conclude that location-specific information exists prior to the hippocampus. MEC cells are similar to hippocampal place cells in that their firing can be controlled by the rotation of a visual cue (a white card attached to the wall), but is not disrupted by removing the cue. An important difference between hippocampal and entorhinal cells was seen when the shape of the recording chamber was changed. In the transition from a cylinder to an equal-area square of similar appearance, MEC firing patterns topologically transformed (or “stretched”) while those of hippocampal place cells changed to an unpredictable pattern. We conclude that the positional firing of MEC cells is more “sensory bound” than hippocampal cells, and that the ability to discriminate different environments, while present in the hippocampus, is not yet present in its input from MEC.

399 citations

Journal ArticleDOI
01 Jul 1983-Cell
TL;DR: The adenovirus type 5 E1A transcriptional control region contains an element with enhancer properties located at or very close to a sequence required in cis for packaging of viral DNA that functions to enhance transformation by the herpesvirus thymidine kinase gene in both mouse and human cells.

398 citations

Journal ArticleDOI
20 Jan 2000-Nature
TL;DR: It is shown that hydrolysis of eIF2-bound GTP induced by eIF5 in 48S complexes is necessary but not sufficient for the subunits to join, and a second factor termed eif5B is essential for this process.
Abstract: Initiation of eukaryotic protein synthesis begins with the ribosome separated into its 40S and 60S subunits. The 40S subunit first binds eukaryotic initiation factor (eIF) 3 and an eIF2-GTP-initiator transfer RNA ternary complex. The resulting complex requires eIF1, eIF1A, eIF4A, eIF4B and eIF4F to bind to a messenger RNA and to scan to the initiation codon. eIF5 stimulates hydrolysis of eIF2-bound GTP and eIF2 is released from the 48S complex formed at the initiation codon before it is joined by a 60S subunit to form an active 80S ribosome. Here we show that hydrolysis of eIF2-bound GTP induced by eIF5 in 48S complexes is necessary but not sufficient for the subunits to join. A second factor termed eIF5B (relative molecular mass 175,000) is essential for this process. It is a homologue of the prokaryotic initiation factor IF2 (re and, like it, mediates joining of subunits and has a ribosome-dependent GTPase activity that is essential for its function.

398 citations


Authors

Showing all 54162 results

NameH-indexPapersCitations
Meir J. Stampfer2771414283776
Bert Vogelstein247757332094
Zhong Lin Wang2452529259003
Peter Libby211932182724
Robert M. Califf1961561167961
Stephen V. Faraone1881427140298
David L. Kaplan1771944146082
David Baker1731226109377
Nora D. Volkow165958107463
David R. Holmes1611624114187
Richard J. Davidson15660291414
Ronald G. Crystal15599086680
Jovan Milosevic1521433106802
James J. Collins15166989476
Mark A. Rubin14569995640
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

97% related

Columbia University
224K papers, 12.8M citations

97% related

University of California, San Diego
204.5K papers, 12.3M citations

97% related

University of California, Los Angeles
282.4K papers, 15.7M citations

96% related

University of Minnesota
257.9K papers, 11.9M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202325
2022168
20212,825
20202,891
20192,528
20182,456