scispace - formally typeset
Search or ask a question
Institution

State University of New York System

EducationAlbany, New York, United States
About: State University of New York System is a education organization based out in Albany, New York, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 54077 authors who have published 78070 publications receiving 2985160 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work develops and analyzes a method, based on bounding-volume hierarchies, for efficient collision detection for objects moving within highly complex environments, and provides experimental evidence showing that this approach yields substantially faster collision detection than previous methods.
Abstract: Collision detection is of paramount importance for many applications in computer graphics and visualization. Typically, the input to a collision detection algorithm is a large number of geometric objects comprising an environment, together with a set of objects moving within the environment. In addition to determining accurately the contacts that occur between pairs of objects, one needs also to do so at real-time rates. Applications such as haptic force feedback can require over 1000 collision queries per second. We develop and analyze a method, based on bounding-volume hierarchies, for efficient collision detection for objects moving within highly complex environments. Our choice of bounding volume is to use a discrete orientation polytope (k-DOP), a convex polytope whose facets are determined by halfspaces whose outward normals come from a small fixed set of k orientations. We compare a variety of methods for constructing hierarchies (BV-trees) of bounding k-DOPs. Further, we propose algorithms for maintaining an effective BV-tree of k-DOPs for moving objects, as they rotate, and for performing fast collision detection using BV-trees of the moving objects and of the environment. Our algorithms have been implemented and tested. We provide experimental evidence showing that our approach yields substantially faster collision detection than previous methods.

941 citations

Journal ArticleDOI
TL;DR: Stem cell self-renewal and differentiation is influenced by the 3D environment within the stem cell niche, and the intimate dynamic relationship between cells and the ECM must be understood to ensure appropriate cell behavior.
Abstract: The extracellular matrix (ECM) regulates cell behavior by influencing cell proliferation, survival, shape, migration and differentiation. Far from being a static structure, the ECM is constantly undergoing remodeling--i.e. assembly and degradation--particularly during the normal processes of development, differentiation and wound repair. When misregulated, this can contribute to disease. ECM assembly is regulated by the 3D environment and the cellular tension that is transmitted through integrins. Degradation is controlled by complex proteolytic cascades, and misregulation of these results in ECM damage that is a common component of many diseases. Tissue engineering strives to replace damaged tissues with stem cells seeded on synthetic structures designed to mimic the ECM and thus restore the normal control of cell function. Stem cell self-renewal and differentiation is influenced by the 3D environment within the stem cell niche. For tissue-engineering strategies to be successful, the intimate dynamic relationship between cells and the ECM must be understood to ensure appropriate cell behavior.

939 citations

Journal ArticleDOI
24 Apr 1998-Science
TL;DR: Electron microscopy revealed supramolecular structures spanning the inner and outer membranes of flagellated and nonflagllated strains; such structures were not detected in strains carrying null mutations in components of the type III apparatus.
Abstract: The type III secretion system of Salmonella typhimurium directs the translocation of proteins into host cells. Evolutionarily related to the flagellar assembly machinery, this system is also present in other pathogenic bacteria, but its organization is unknown. Electron microscopy revealed supramolecular structures spanning the inner and outer membranes of flagellated and nonflagellated strains; such structures were not detected in strains carrying null mutations in components of the type III apparatus. Isolated structures were found to contain at least three proteins of this secretion system. Thus, the type III apparatus of S. typhimurium, and presumably other bacteria, exists as a supramolecular structure in the bacterial envelope.

935 citations

Journal ArticleDOI
TL;DR: The Th17 lineage, acting largely through IL-17, confers the dominant response to oral candidiasis through neutrophils and antimicrobial factors.
Abstract: The commensal fungus Candida albicans causes oropharyngeal candidiasis (OPC; thrush) in settings of immunodeficiency. Although disseminated, vaginal, and oral candidiasis are all caused by C. albicans species, host defense against C. albicans varies by anatomical location. T helper 1 (Th1) cells have long been implicated in defense against candidiasis, whereas the role of Th17 cells remains controversial. IL-17 mediates inflammatory pathology in a gastric model of mucosal candidiasis, but is host protective in disseminated disease. Here, we directly compared Th1 and Th17 function in a model of OPC. Th17-deficient (IL-23p19(-/-)) and IL-17R-deficient (IL-17RA(-/-)) mice experienced severe OPC, whereas Th1-deficient (IL-12p35(-/-)) mice showed low fungal burdens and no overt disease. Neutrophil recruitment was impaired in IL-23p19(-/-) and IL-17RA(-/-), but not IL-12(-/-), mice, and TCR-alphabeta cells were more important than TCR-gammadelta cells. Surprisingly, mice deficient in the Th17 cytokine IL-22 were only mildly susceptible to OPC, indicating that IL-17 rather than IL-22 is vital in defense against oral candidiasis. Gene profiling of oral mucosal tissue showed strong induction of Th17 signature genes, including CXC chemokines and beta defensin-3. Saliva from Th17-deficient, but not Th1-deficient, mice exhibited reduced candidacidal activity. Thus, the Th17 lineage, acting largely through IL-17, confers the dominant response to oral candidiasis through neutrophils and antimicrobial factors.

931 citations

Journal ArticleDOI
05 Jul 2002-Science
TL;DR: This work subjected populations of an exploited fish to large, small, or random size-selective harvest of adults over four generations, finding that large-harvested populations initially produced the highest catch but quickly evolved a lower yield than controls.
Abstract: Fishery management plans ignore the potential for evolutionary change in harvestable biomass. We subjected populations of an exploited fish (Menidia menidia) to large, small, or random size-selective harvest of adults over four generations. Harvested biomass evolved rapidly in directions counter to the size-dependent force of fishing mortality. Large-harvested populations initially produced the highest catch but quickly evolved a lower yield than controls. Small-harvested populations did the reverse. These shifts were caused by selection of genotypes with slower or faster rates of growth. Management tools that preserve natural genetic variation are necessary for long-term sustainable yield.

927 citations


Authors

Showing all 54162 results

NameH-indexPapersCitations
Meir J. Stampfer2771414283776
Bert Vogelstein247757332094
Zhong Lin Wang2452529259003
Peter Libby211932182724
Robert M. Califf1961561167961
Stephen V. Faraone1881427140298
David L. Kaplan1771944146082
David Baker1731226109377
Nora D. Volkow165958107463
David R. Holmes1611624114187
Richard J. Davidson15660291414
Ronald G. Crystal15599086680
Jovan Milosevic1521433106802
James J. Collins15166989476
Mark A. Rubin14569995640
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

97% related

Columbia University
224K papers, 12.8M citations

97% related

University of California, San Diego
204.5K papers, 12.3M citations

97% related

University of California, Los Angeles
282.4K papers, 15.7M citations

96% related

University of Minnesota
257.9K papers, 11.9M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202325
2022168
20212,825
20202,891
20192,528
20182,456