scispace - formally typeset
Search or ask a question
Institution

University of South Australia

EducationAdelaide, South Australia, Australia
About: University of South Australia is a education organization based out in Adelaide, South Australia, Australia. It is known for research contribution in the topics: Population & Context (language use). The organization has 10086 authors who have published 32587 publications receiving 913683 citations. The organization is also known as: The University of South Australia & UniSA.


Papers
More filters
Journal ArticleDOI
TL;DR: This Consensus Statement is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications to reduce misunderstanding and misinterpretation of research data generated in various experimental models.
Abstract: Epithelial-mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly. This growing interest warrants the need for a consensus among researchers when referring to and undertaking research on EMT. This Consensus Statement, mediated by 'the EMT International Association' (TEMTIA), is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications. We trust that these guidelines will help to reduce misunderstanding and misinterpretation of research data generated in various experimental models and to promote cross-disciplinary collaboration to identify and address key open questions in this research field. While recognizing the importance of maintaining diversity in experimental approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research to increasing our understanding of developmental processes and combatting cancer and other diseases depend on the adoption of a unified terminology to describe EMT.

931 citations

Journal ArticleDOI
TL;DR: This review surveys methods for the fabrication of polymeric surfaces and thin plasma polymer coatings that contain reactive chemical groups useful for the subsequent covalent immobilization, by solution chemical reactions or vapor phase grafting, of molecules or polymers that can exert bio-specific interfacial responses.
Abstract: This review surveys methods for the fabrication, by plasma surface treatments or plasma polymerization, of polymeric surfaces and thin plasma polymer coatings that contain reactive chemical groups useful for the subsequent covalent immobilization, by solution chemical reactions or vapor phase grafting, of molecules or polymers that can exert bio-specific interfacial responses. Surfaces containing amine, carboxy, hydroxy, and aldehyde groups are the subject of this review. Aminated surfaces have been fabricated using various plasma vapors or mixtures and have found wide use for bio-interface applications. However, in many cases the amine surfaces have a rather limited shelf life, with post-plasma oxidation reactions and surface adaptation leading to the disappearance of amine groups from the surface. Aging is a widespread phenomenon that often has not been recognized, particularly in some of the earlier studies on the use of plasma-fabricated surfaces for bio-interfacial applications, and can markedly alter the surface chemistry. Plasma-fabricated surfaces that contain carboxy groups have also been well documented. Fewer reports exist on hydroxy and aldehyde surfaces prepared by plasma methods. Hydroxy surfaces can be prepared by water plasma treatment or the plasma polymerization of alkyl alcohol vapors. Water plasma treatment on many polymer substrates suffers from aging, with surface adaptation leading to the movement of surface modification effects into the polymer. Both hydroxy and aldehyde surfaces have been used for the covalent immobilization of biologically active molecules. Aging effects are less well documented than for amine surfaces. This review also surveys studies using such surfaces for cell colonization assays. Generally, these surface chemistries show good ability to support cell colonization, though the effectiveness seems to depend on the process vapor and the plasma conditions. Carboxylate co-polymer surfaces have shown excellent ability to support the colonization of some human cell lines of clinical interest. Immobilization of proteins onto plasma-carboxylated surfaces is also well established.

920 citations

Journal ArticleDOI
TL;DR: It is argued that there is no single optimum approach for integrating local and scientific knowledge and a shift in science is encouraged from the development of knowledge integration products to theDevelopment of problem-focussed, knowledge integration processes.

919 citations

Journal ArticleDOI
TL;DR: In this paper, the metal immobilization and phytoavailability of Cd, Cu and Pb was examined using naturally contaminated shooting range and spiked soils using chicken manure and green waste-derived biochar.
Abstract: Biochar has attracted research interest due to its ability to increase the soil carbon pool and improve crop productivity. The objective of this study was to evaluate the metal immobilizing impact of chicken manure- and green waste-derived biochars, and their effectiveness in promoting plant growth. The immobilization and phytoavailability of Cd, Cu and Pb was examined using naturally contaminated shooting range and spiked soils. Biochar samples prepared from chicken manure and green waste were used as soil amendments. Application of biochar significantly reduced NH4NO3 extractable Cd, Cu and Pb concentrations of soils, indicating the immobilization of these metals. Chicken manure-derived biochar increased plant dry biomass by 353 and 572% for shoot and root, respectively with 1% of biochar addition. This might be attributed to reduced toxicity of metals and increased availability of nutrients such as P and K. Both biochars significantly reduced Cd, Cu and Pb accumulation by Indian mustard (Brassica juncea), and the reduction increased with increasing amount of biochar application except Cu concentration. Metal sequential fractionation data indicated that biochar treatments substantially modified the partitioning of Cd, Cu and Pb from the easily exchangeable phase to less bioavailable organic bound fraction. The results clearly showed that biochar application was effective in metal immobilization, thereby reducing the bioavailability and phytotoxicity of heavy metals.

915 citations

Journal ArticleDOI
TL;DR: Modification to produce engineered/designer biochar is likely to enhance the sorption capacity of biochar and its potential applications for environmental remediation.

905 citations


Authors

Showing all 10298 results

NameH-indexPapersCitations
Andrew P. McMahon16241590650
Timothy P. Hughes14583191357
Jeremy K. Nicholson14177380275
Peng Shi137137165195
Daniel Thomas13484684224
Jian Li133286387131
Matthew Jones125116196909
Ulrich S. Schubert122222985604
Elaine Holmes11956058975
Arne Astrup11486668877
Richard Gray10980878580
John B. Furness10359737668
Thomas J. Jentsch10123832810
Ben W.J. Mol101148547733
John C. Lindon9948844063
Network Information
Related Institutions (5)
Monash University
100.6K papers, 3M citations

97% related

University of Queensland
155.7K papers, 5.7M citations

96% related

University of Sydney
187.3K papers, 6.1M citations

94% related

University of New South Wales
153.6K papers, 4.8M citations

94% related

University of Melbourne
174.8K papers, 6.3M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202393
2022306
20212,326
20202,175
20192,151
20182,045