scispace - formally typeset
Open AccessJournal ArticleDOI

Fibroblast Adaptation and Stiffness Matching to Soft Elastic Substrates

TLDR
Within a range of stiffness spanning that of soft tissues, fibroblasts tune their internal stiffness to match that of their substrate, and modulation of cellular stiffness by the rigidity of the environment may be a mechanism used to direct cell migration and wound repair.
About
This article is published in Biophysical Journal.The article was published on 2007-12-15 and is currently open access. It has received 999 citations till now. The article focuses on the topics: Stiffness.

read more

Citations
More filters
Dissertation

Empirical Determination of Vascular Smooth Muscle Cell Mechano-Adaptation

TL;DR: This dissertation presents a meta-modelling system that automates the very labor-intensive and therefore time-heavy and therefore expensive and expensive process of systematically cataloging and cataloging individual cells and their properties.

Modelo computacional y experimental del comportamiento mecánico y biológico de fibroblastos aislados del ligamento colateral de la rodilla expuestos a estímulos biofísicos del ultrasonido

TL;DR: Ingenieria de Tejidos / Mecanica celular as mentioned in this paper : Estimulos bio-fisicos en Ingeniería de TeJidos.
Patent

Controlled delivery of TLR3 agonists in structural polymeric devices

TL;DR: In this paper, the authors present compositions, methods, and devices for creating an stimulating an antigen-specific dendritic cell immune response, which provides prophylactic and therapeutic immunity to subjects against cancer and infectious agents.
Book ChapterDOI

Regulation of Actin Cytoskeleton Dynamics in Migrating Cells

TL;DR: This chapter gives an overview of the biochemical and biomechanical factors that are involved in the regulation of actin cytoskeleton, and explores how coupling between these factors contribute to synchronized cell movement.
References
More filters
Journal ArticleDOI

Matrix elasticity directs stem cell lineage specification.

TL;DR: Naive mesenchymal stem cells are shown here to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity, consistent with the elasticity-insensitive commitment of differentiated cell types.
Journal ArticleDOI

Tissue Cells Feel and Respond to the Stiffness of Their Substrate

TL;DR: An understanding of how tissue cells—including fibroblasts, myocytes, neurons, and other cell types—sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels with which elasticity can be tuned to approximate that of tissues.
Journal ArticleDOI

Tensional homeostasis and the malignant phenotype.

TL;DR: It is found that tumors are rigid because they have a stiff stroma and elevated Rho-dependent cytoskeletal tension that drives focal adhesions, disrupts adherens junctions, perturbs tissue polarity, enhances growth, and hinders lumen formation.
Journal ArticleDOI

Cell Movement Is Guided by the Rigidity of the Substrate

TL;DR: It is discovered that changes in tissue rigidity and strain could play an important controlling role in a number of normal and pathological processes involving cell locomotion, including morphogenesis, the immune response, and wound healing.
Journal ArticleDOI

Cell locomotion and focal adhesions are regulated by substrate flexibility

TL;DR: The ability of cells to survey the mechanical properties of their surrounding environment is demonstrated and the possible involvement of both protein tyrosine phosphorylation and myosin-generated cortical forces in this process is suggested.
Related Papers (5)