scispace - formally typeset
Open AccessJournal ArticleDOI

The Human Connectome: A Structural Description of the Human Brain

Reads0
Chats0
TLDR
A research strategy to achieve the connection matrix of the human brain (the human “connectome”) is proposed, and its potential impact is discussed.
Abstract
The connection matrix of the human brain (the human “connectome”) represents an indispensable foundation for basic and applied neurobiological research. However, the network of anatomical connections linking the neuronal elements of the human brain is still largely unknown. While some databases or collations of large-scale anatomical connection patterns exist for other mammalian species, there is currently no connection matrix of the human brain, nor is there a coordinated research effort to collect, archive, and disseminate this important information. We propose a research strategy to achieve this goal, and discuss its potential impact.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Functional and effective connectivity: a review.

TL;DR: The inception of this journal has been foreshadowed by an ever-increasing number of publications on functional connectivity, causal modeling, connectomics, and multivariate analyses of distributed patterns of brain responses.
Journal ArticleDOI

Toward discovery science of human brain function

Bharat B. Biswal, +54 more
TL;DR: The 1000 Functional Connectomes Project (Fcon_1000) as discussed by the authors is a large-scale collection of functional connectome data from 1,414 volunteers collected independently at 35 international centers.
Journal ArticleDOI

Large-scale brain networks and psychopathology: a unifying triple network model

TL;DR: A triple network model of aberrant saliency mapping and cognitive dysfunction in psychopathology is proposed, emphasizing the surprising parallels that are beginning to emerge across psychiatric and neurological disorders.
Journal ArticleDOI

The economy of brain network organization

TL;DR: It is proposed that brain organization is shaped by an economic trade-off between minimizing costs and allowing the emergence of adaptively valuable topological patterns of anatomical or functional connectivity between multiple neuronal populations.
Journal ArticleDOI

Rich-Club Organization of the Human Connectome

TL;DR: It is demonstrated that brain hubs form a so-called “rich club,” characterized by a tendency for high-degree nodes to be more densely connected among themselves than nodes of a lower degree, providing important information on the higher-level topology of the brain network.
References
More filters
Journal ArticleDOI

Distributed Hierarchical Processing in the Primate Cerebral Cortex

TL;DR: A summary of the layout of cortical areas associated with vision and with other modalities, a computerized database for storing and representing large amounts of information on connectivity patterns, and the application of these data to the analysis of hierarchical organization of the cerebral cortex are reported on.
Journal ArticleDOI

Sequence the Human Genome

TL;DR: This book aims to provide a history of Chinese modern art from 17th Century to the present day through the lens of 20th Century critics, practitioners, journalists, and mediaeval and modern-day critics.
Journal ArticleDOI

Dynamic causal modelling.

TL;DR: As with previous analyses of effective connectivity, the focus is on experimentally induced changes in coupling, but unlike previous approaches in neuroimaging, the causal model ascribes responses to designed deterministic inputs, as opposed to treating inputs as unknown and stochastic.
Journal ArticleDOI

Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging

TL;DR: The results provide the first quantitative demonstration of reliable inference of anatomical connectivity between human gray matter structures using diffusion data and the first connectivity-based segmentation of gray matter.
Journal ArticleDOI

The columnar organization of the neocortex.

V B Mountcastle
- 01 Apr 1997 - 
TL;DR: The modular organization of nervous systems is a widely documented principle of design for both vertebrate and invertebrate brains of which the columnar organization of the neocortex is an example.
Related Papers (5)