scispace - formally typeset
Search or ask a question

Showing papers on "Species richness published in 2017"


Journal ArticleDOI
14 Sep 2017-Nature
TL;DR: In this paper, the authors show that biomass production increases with species richness in a wide range of wild taxa and ecosystems, and after controlling for environmental covariates, increases in biomass with biodiversity are stronger in nature than has previously been documented in experiments and comparable to or stronger than the effects of other well-known drivers of productivity, including climate and nutrient availability.
Abstract: More than 500 controlled experiments have collectively suggested that biodiversity loss reduces ecosystem productivity and stability. Yet the importance of biodiversity in sustaining the world's ecosystems remains controversial, largely because of the lack of validation in nature, where strong abiotic forcing and complex interactions are assumed to swamp biodiversity effects. Here we test this assumption by analysing 133 estimates reported in 67 field studies that statistically separated the effects of biodiversity on biomass production from those of abiotic forcing. Contrary to the prevailing opinion of the previous two decades that biodiversity would have rare or weak effects in nature, we show that biomass production increases with species richness in a wide range of wild taxa and ecosystems. In fact, after controlling for environmental covariates, increases in biomass with biodiversity are stronger in nature than has previously been documented in experiments and comparable to or stronger than the effects of other well-known drivers of productivity, including climate and nutrient availability. These results are consistent with the collective experimental evidence that species richness increases community biomass production, and suggest that the role of biodiversity in maintaining productive ecosystems should figure prominently in global change science and policy.

410 citations


Journal ArticleDOI
03 Mar 2017-Science
TL;DR: Analysis of plant distributions, archaeological sites, and environmental data indicates that modern tree communities in Amazonia are structured to an important extent by a long history of plant domestication by Amazonian peoples.
Abstract: The extent to which pre-Columbian societies altered Amazonian landscapes is hotly debated. We performed a basin-wide analysis of pre-Columbian impacts on Amazonian forests by overlaying known archaeological sites in Amazonia with the distributions and abundances of 85 woody species domesticated by pre-Columbian peoples. Domesticated species are five times more likely than nondomesticated species to be hyperdominant. Across the basin, the relative abundance and richness of domesticated species increase in forests on and around archaeological sites. In southwestern and eastern Amazonia, distance to archaeological sites strongly influences the relative abundance and richness of domesticated species. Our analyses indicate that modern tree communities in Amazonia are structured to an important extent by a long history of plant domestication by Amazonian peoples.

398 citations


Journal ArticleDOI
TL;DR: Greater international cooperation using standardized protocols and methods to monitor and manage European freshwater mussel diversity will not only help conserve this vulnerable group but also, through the protection of these important organisms, will offer wider benefits to freshwater ecosystems.
Abstract: Freshwater mussels of the Order Unionida provide important ecosystem functions and services, yet many of their populations are in decline. We comprehensively review the status of the 16 currently recognized species in Europe, collating for the first time their life-history traits, distribution, conservation status, habitat preferences, and main threats in order to suggest future management actions. In northern, central, and eastern Europe, a relatively homogeneous species composition is found in most basins. In southern Europe, despite the lower species richness, spatially restricted species make these basins a high conservation priority. Information on freshwater mussels in Europe is unevenly distributed with considerable differences in data quality and quantity among countries and species. To make conservation more effective in the future, we suggest greater international cooperation using standardized protocols and methods to monitor and manage European freshwater mussel diversity. Such an approach will not only help conserve this vulnerable group but also, through the protection of these important organisms, will offer wider benefits to freshwater ecosystems.

378 citations


Journal ArticleDOI
TL;DR: It is shown that additional conservation actions are needed to effectively protect reptiles, particularly lizards and turtles, and that adding reptile knowledge to a global complementarity conservation priority scheme identifies many locations that consequently become important.
Abstract: The distributions of amphibians, birds and mammals have underpinned global and local conservation priorities, and have been fundamental to our understanding of the determinants of global biodiversity. In contrast, the global distributions of reptiles, representing a third of terrestrial vertebrate diversity, have been unavailable. This prevented the incorporation of reptiles into conservation planning and biased our understanding of the underlying processes governing global vertebrate biodiversity. Here, we present and analyse the global distribution of 10,064 reptile species (99% of extant terrestrial species). We show that richness patterns of the other three tetrapod classes are good spatial surrogates for species richness of all reptiles combined and of snakes, but characterize diversity patterns of lizards and turtles poorly. Hotspots of total and endemic lizard richness overlap very little with those of other taxa. Moreover, existing protected areas, sites of biodiversity significance and global conservation schemes represent birds and mammals better than reptiles. We show that additional conservation actions are needed to effectively protect reptiles, particularly lizards and turtles. Adding reptile knowledge to a global complementarity conservation priority scheme identifies many locations that consequently become important. Notably, investing resources in some of the world’s arid, grassland and savannah habitats might be necessary to represent all terrestrial vertebrates efficiently.

354 citations


Journal ArticleDOI
12 Jul 2017-Preslia
TL;DR: The Global Naturalized Alien Flora (GloNAF) database as mentioned in this paper contains data on the distribution of naturalized alien plants in 483 mainland and 361 island regions of the world.
Abstract: Using the recently built Global Naturalized Alien Flora (GloNAF) database, containing data on the distribution of naturalized alien plants in 483 mainland and 361 island regions of the world, we describe patterns in diversity and geographic distribution of naturalized and invasive plant species, taxonomic, phylogenetic and life-history structure of the global naturalized flora as well as levels of naturalization and their determinants. The mainland regions with the highest numbers of naturalized aliens are some Australian states (with New South Wales being the richest on this continent) and several North American regions (of which California with 1753 naturalized plant species represents the world’s richest region in terms of naturalized alien vascular plants). England, Japan, New Zealand and the Hawaiian archipelago harbour most naturalized plants among islands or island groups. These regions also form the main hotspots of the regional levels of naturalization, measured as the percentage of naturalized aliens in the total flora of the region. Such hotspots of relative naturalized species richness appear on both the western and eastern coasts of North America, in north-western Europe, South Africa, south-eastern Australia, New Zealand, and India. High levels of island invasions by naturalized plants are concentrated in the Pacific, but also occur on individual islands across all oceans. The numbers of naturalized species are closely correlated with those of native species, with a stronger correlation and steeper increase for islands than mainland regions, indicating a greater vulnerability of islands to invasion by species that become successfully naturalized. South Africa, India, California, Cuba, Florida, Queensland and Japan have the highest numbers of invasive species. Regions in temperate and tropical zonobiomes harbour in total 9036 and 6774 naturalized species, respectively, followed by 3280 species naturalized in the Mediterranean zonobiome, 3057 in the subtropical zonobiome and 321 in the Arctic. The New World is richer in naturalized alien plants, with 9905 species compared to 7923 recorded in the Old World. While isolation is the key factor driving the level of naturalization on islands, zonobiomes differing in climatic regimes, and socioeconomy represented by per capita GDP, are central for mainland regions. The 11 most widely distributed species each occur in regions covering about one third of the globe or more in terms of the number of regions where they are naturalized and at least 35% of the Earth’s land surface in terms of those regions’ areas, with the most widely distributed species Sonchus oleraceus occuring in 48% of the regions that cover 42% of the world area. Other widely distributed species are Ricinus communis, Oxalis corniculata, Portulaca oleracea, Eleusine indica, Chenopodium album, Capsella bursa-pastoris, Stellaria media, Bidens pilosa, Datura stramonium and Echinochloa crus-galli. Using the occurrence as invasive rather than only naturalized yields a different ranking, with Lantana camara (120 regions out of 349 for which data on invasive status are known), Calotropis procera (118), Eichhornia crassipes (113), Sonchus oleraceus (108) and Leucaena leucocephala (103) on top. As to the life-history spectra, islands harbour more naturalized woody species (34.4%) thanmainland regions (29.5%), and fewer annual herbs (18.7% compared to 22.3%). Ranking families by their absolute numbers of naturalized species reveals that Compositae (1343 species), Poaceae (1267) and Leguminosae (1189) contribute most to the global naturalized alien flora. Some families are disproportionally represented by naturalized aliens on islands (Arecaceae, Araceae, Acanthaceae, Amaryllidaceae, Asparagaceae, Convolvulaceae, Rubiaceae, Malvaceae), and much fewer so on mainland (e.g. Brassicaceae, Caryophyllaceae, Boraginaceae). Relating the numbers of naturalized species in a family to its total global richness shows that some of the large species-rich families are over-represented among naturalized aliens (e.g. Poaceae, Leguminosae, Rosaceae, Amaranthaceae, Pinaceae), some under-represented (e.g. Euphorbiaceae, Rubiaceae), whereas the one richest in naturalized species, Compositae, reaches a value expected from its global species richness. Significant phylogenetic signal indicates that families with an increased potential of their species to naturalize are not distributed randomly on the evolutionary tree. Solanum (112 species), Euphorbia (108) and Carex (106) are the genera richest in terms of naturalized species; over-represented on islands are Cotoneaster, Juncus, Eucalyptus, Salix, Hypericum, Geranium and Persicaria, while those relatively richer in naturalized species on the mainland are Atriplex, Opuntia, Oenothera, Artemisia, Vicia, Galium and Rosa. The data presented in this paper also point to where information is lacking and set priorities for future data collection. The GloNAF database has potential for designing concerted action to fill such data gaps, and provide a basis for allocating resources most efficiently towards better understanding and management of plant invasions worldwide.

307 citations


Journal ArticleDOI
TL;DR: Analysis of eight taxonomic groups across 186 islands and 423 mainland regions reveals that those with the greatest gross domestic product per capita, human population density and area have the highest established alien species richness, with the strongest effects on islands.
Abstract: Human-mediated transport beyond biogeographic barriers has led to the introduction and establishment of alien species in new regions worldwide. However, we lack a global picture of established alien species richness for multiple taxonomic groups. Here, we assess global patterns and potential drivers of established alien species richness across eight taxonomic groups (amphibians, ants, birds, freshwater fishes, mammals, vascular plants, reptiles and spiders) for 186 islands and 423 mainland regions. Hotspots of established alien species richness are predominantly island and coastal mainland regions. Regions with greater gross domestic product per capita, human population density, and area have higher established alien richness, with strongest effects emerging for islands. Ants and reptiles, birds and mammals, and vascular plants and spiders form pairs of taxonomic groups with the highest spatial congruence in established alien richness, but drivers explaining richness differ between the taxa in each pair. Across all taxonomic groups, our results highlight the need to prioritize prevention of further alien species introductions to island and coastal mainland regions globally. Analysis of eight taxonomic groups across 186 islands and 423 mainland regions reveals that those with the greatest gross domestic product per capita, human population density and area have the highest established alien species richness, with the strongest effects on islands.

289 citations


Journal ArticleDOI
TL;DR: The results from the Jena Experiment provide further evidence that diversity begets stability, for example stability against invasion of plant species, but unexpectedly some results also suggested the opposite, e.g. when plant communities experience severe perturbations or elevated resource availability.

266 citations


Journal ArticleDOI
TL;DR: Fire suppression resulted in increased carbon stocks but was associated with acute species loss and Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined, highlighting the important role of fire in maintaining biodiversity in tropical savannas.
Abstract: Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha −1 year −1 since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation.

242 citations


Journal ArticleDOI
TL;DR: Both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations.
Abstract: Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.

235 citations


Journal ArticleDOI
TL;DR: How many marine species are named and estimated to exist is assessed, paying particular regard to whether discoveries of deep-sea organisms, microbes and parasites will change the proportion of terrestrial to marine species.

234 citations


Journal ArticleDOI
TL;DR: There is a tendency for stronger B-EF relations in drier climates as well as in areas with longer growing seasons and more functionally diverse tree species, suggesting that as water limitation increases under climate change, biodiversity may become even more important to support high levels of functioning in European forests.
Abstract: The importance of biodiversity in supporting ecosystem functioning is generally well accepted. However, most evidence comes from small-scale studies, and scaling-up patterns of biodiversity-ecosystem functioning (B-EF) remains challenging, in part because the importance of environmental factors in shaping B-EF relations is poorly understood. Using a forest research platform in which 26 ecosystem functions were measured along gradients of tree species richness in six regions across Europe, we investigated the extent and the potential drivers of context dependency of B-EF relations. Despite considerable variation in species richness effects across the continent, we found a tendency for stronger B-EF relations in drier climates as well as in areas with longer growing seasons and more functionally diverse tree species. The importance of water availability in driving context dependency suggests that as water limitation increases under climate change, biodiversity may become even more important to support high levels of functioning in European forests.

Journal ArticleDOI
TL;DR: The estimates suggest that there are likely to be at least 1 to 6 billion species on Earth, and the new Pie of Life is dominated by bacteria (approximately 70–90% of species) and insects are only one of many hyperdiverse groups.
Abstract: The number of species on Earth is one of the most fundamental numbers in science, but one that remains highly uncertain. Clearly, more species exist than the present number of formally described species (approximately 1.5 million), but projected species numbers differ dramatically among studies. Recent estimates range from about 2 million species to approximately 1 trillion, but most project around 11 million species or fewer. Numerous studies have focused on insects as a major component of overall richness, and many have excluded other groups, especially non-eukaryotes. Here, we re-estimate global biodiversity. We also estimate the relative richness of the major clades of living organisms, summarized as a “Pie of Life.” Unlike many previous estimates, we incorporate morphologically cryptic arthropod species from molecular-based species delimitation. We also include numerous groups of organisms that have not been simultaneously included in previous estimates, especially those often associated with...

Journal ArticleDOI
TL;DR: Prairie strips could be used to improve biodiversity and ecosystem services across 3.9 million ha of cropland in Iowa and a large portion of the 69 million ha under similar management in the United States if federal and state policies were aligned to promote prairie strips.
Abstract: Loss of biodiversity and degradation of ecosystem services from agricultural lands remain important challenges in the United States despite decades of spending on natural resource management. To date, conservation investment has emphasized engineering practices or vegetative strategies centered on monocultural plantings of nonnative plants, largely excluding native species from cropland. In a catchment-scale experiment, we quantified the multiple effects of integrating strips of native prairie species amid corn and soybean crops, with prairie strips arranged to arrest run-off on slopes. Replacing 10% of cropland with prairie strips increased biodiversity and ecosystem services with minimal impacts on crop production. Compared with catchments containing only crops, integrating prairie strips into cropland led to greater catchment-level insect taxa richness (2.6-fold), pollinator abundance (3.5-fold), native bird species richness (2.1-fold), and abundance of bird species of greatest conservation need (2.1-fold). Use of prairie strips also reduced total water runoff from catchments by 37%, resulting in retention of 20 times more soil and 4.3 times more phosphorus. Corn and soybean yields for catchments with prairie strips decreased only by the amount of the area taken out of crop production. Social survey results indicated demand among both farming and nonfarming populations for the environmental outcomes produced by prairie strips. If federal and state policies were aligned to promote prairie strips, the practice would be applicable to 3.9 million ha of cropland in Iowa alone.

Journal ArticleDOI
TL;DR: The potential of assessing functional diversity from space is demonstrated, providing a pathway only limited by technological advances and not by methodology, as remote sensing technology improves and it is now possible to map fine-scale variation in plant functional traits.
Abstract: Assessing functional diversity from space can help predict productivity and stability of forest ecosystems at global scale using biodiversity–ecosystem functioning relationships. We present a new spatially continuous method to map regional patterns of tree functional diversity using combined laser scanning and imaging spectroscopy. The method does not require prior taxonomic information and integrates variation in plant functional traits between and within plant species. We compare our method with leaf-level field measurements and species-level plot inventory data and find reasonable agreement. Morphological and physiological diversity show consistent change with topography and soil, with low functional richness at a mountain ridge under specific environmental conditions. Overall, functional richness follows a logarithmic increase with area, whereas divergence and evenness are scale invariant. By mapping diversity at scales of individual trees to whole communities we demonstrate the potential of assessing functional diversity from space, providing a pathway only limited by technological advances and not by methodology. As remote sensing technology improves, it is now possible to map fine-scale variation in plant functional traits. Schneider et al. remotely sense tree functional diversity, validate with field data, and reveal patterns of plant adaptation to the environment previously not retrievable from plot data

Journal ArticleDOI
TL;DR: In this paper, the influence of air temperature and rainfall regimes on the distribution, abundance, and species richness of mangrove forests was quantified via regional range-limit-specific analyses.
Abstract: Mangrove forests are highly productive tidal saline wetland ecosystems found along sheltered tropical and subtropical coasts. Ecologists have long assumed that climatic drivers (i.e., temperature and rainfall regimes) govern the global distribution, structure, and function of mangrove forests. However, data constraints have hindered the quantification of direct climate–mangrove linkages in many parts of the world. Recently, the quality and availability of global-scale climate and mangrove data have been improving. Here, we used these data to better understand the influence of air temperature and rainfall regimes upon the distribution, abundance, and species richness of mangrove forests. Although our analyses identify global-scale relationships and thresholds, we show that the influence of climatic drivers is best characterized via regional range-limit-specific analyses. We quantified climatic controls across targeted gradients in temperature and/or rainfall within 14 mangrove distributional range limits. Climatic thresholds for mangrove presence, abundance, and species richness differed among the 14 studied range limits. We identified minimum temperature-based thresholds for range limits in eastern North America, eastern Australia, New Zealand, eastern Asia, eastern South America, and southeast Africa. We identified rainfall-based thresholds for range limits in western North America, western Gulf of Mexico, western South America, western Australia, Middle East, northwest Africa, east central Africa, and west-central Africa. Our results show that in certain range limits (e.g., eastern North America, western Gulf of Mexico, eastern Asia), winter air temperature extremes play an especially important role. We conclude that rainfall and temperature regimes are both important in western North America, western Gulf of Mexico, and western Australia. With climate change, alterations in temperature and rainfall regimes will affect the global distribution, abundance, and diversity of mangrove forests. In general, warmer winter temperatures are expected to allow mangroves to expand poleward at the expense of salt marshes. However, dispersal and habitat availability constraints may hinder expansion near certain range limits. Along arid and semiarid coasts, decreases or increases in rainfall are expected to lead to mangrove contraction or expansion, respectively. Collectively, our analyses quantify climate–mangrove linkages and improve our understanding of the expected global- and regional-scale effects of climate change upon mangrove forests.

Journal ArticleDOI
John Alroy1
TL;DR: Global losses in 11 groups of organisms that would ensue from disturbance of all remaining tropical forest habitats are predicted based on extrapolating the respective numbers of species in disturbed and undisturbed habitats using a large global database of species inventories.
Abstract: It is widely expected that habitat destruction in the tropics will cause a mass extinction in coming years, but the potential magnitude of the loss is unclear. Existing literature has focused on estimating global extinction rates indirectly or on quantifying effects only at local and regional scales. This paper directly predicts global losses in 11 groups of organisms that would ensue from disturbance of all remaining tropical forest habitats. The results are based on applying a highly accurate method of estimating species richness to 875 ecological samples. About 41% of the tree and animal species in this dataset are absent from disturbed habitats, even though most samples do still represent forests of some kind. The individual figures are 30% for trees and 8-65% for 10 animal groups. Local communities are more robust to disturbance because losses are partially balanced out by gains resulting from homogenization.

Journal ArticleDOI
TL;DR: Considering rising agricultural demand, areas where timely land-use planning may proactively mitigate biodiversity loss are highlighted, to highlight areas at risk of high biodiversity loss across the entire option space of possible agricultural change.
Abstract: Agriculture is the leading driver of biodiversity loss. However, its future impact on biodiversity remains unclear, especially because agricultural intensification is often neglected, and high path-dependency is assumed when forecasting agricultural development—although the past suggests that shock events leading to considerable agricultural change occur frequently. Here, we investigate the possible impacts on biodiversity of pathways of expansion and intensification. Our pathways are not built to reach equivalent production targets, and therefore they should not be directly compared; they instead highlight areas at risk of high biodiversity loss across the entire option space of possible agricultural change. Based on an extensive database of biodiversity responses to agriculture, we find 30% of species richness and 31% of species abundances potentially lost because of agricultural expansion across the Amazon and Afrotropics. Only 21% of high-risk expansion areas in the Afrotropics overlap with protected areas (compared with 43% of the Neotropics). Areas at risk of biodiversity loss from intensification are found in India, Eastern Europe and the Afromontane region (7% species richness, 13% abundance loss). Many high-risk regions are not adequately covered by conservation prioritization schemes, and have low national conservation spending and high agricultural growth. Considering rising agricultural demand, we highlight areas where timely land-use planning may proactively mitigate biodiversity loss. The authors predict biodiversity loss under potential future agricultural change. Agricultural expansion threatens species richness and abundance worldwide (up to one-third in some areas), often with little overlap between protected areas and high-risk expansion areas.

Journal ArticleDOI
TL;DR: A predominant effect of plant diversity, along with other factors such as carbon : nitrogen ratio, soil phosphorus and dissolved organic carbon, on soil fungal richness is pointed to.
Abstract: Previous studies have revealed inconsistent correlations between fungal diversity and plant diversity from local to global scales, and there is a lack of information about the diversity-diversity and productivity-diversity relationships for fungi in alpine regions. Here we investigated the internal relationships between soil fungal diversity, plant diversity and productivity across 60 grassland sites on the Tibetan Plateau, using Illumina sequencing of the internal transcribed spacer 2 (ITS2) region for fungal identification. Fungal alpha and beta diversities were best explained by plant alpha and beta diversities, respectively, when accounting for environmental drivers and geographic distance. The best ordinary least squares (OLS) multiple regression models, partial least squares regression (PLSR) and variation partitioning analysis (VPA) indicated that plant richness was positively correlated with fungal richness. However, no correlation between plant richness and fungal richness was evident for fungal functional guilds when analyzed individually. Plant productivity showed a weaker relationship to fungal diversity which was intercorrelated with other factors such as plant diversity, and was thus excluded as a main driver. Our study points to a predominant effect of plant diversity, along with other factors such as carbon : nitrogen (C : N) ratio, soil phosphorus and dissolved organic carbon, on soil fungal richness.

Journal ArticleDOI
TL;DR: Maximum likelihood methods and newly developed biogeographical stochastic mapping methods are applied to infer the ancestral range of the tomato family Solanaceae and to estimate the frequency of dispersal and vicariance events resulting in its present‐day distribution.
Abstract: Aim The tomato family Solanaceae is distributed on all major continents except Antarctica and has its centre of diversity in South America. Its worldwide distribution suggests multiple long-distance dispersals within and between the New and Old Worlds. Here, we apply maximum likelihood (ML) methods and newly developed biogeographical stochastic mapping (BSM) to infer the ancestral range of the family and to estimate the frequency of dispersal and vicariance events resulting in its present-day distribution. Location Worldwide. Methods Building on a recently inferred megaphylogeny of Solanaceae, we conducted ML model fitting of a range of biogeographical models with the program ‘BioGeoBEARS’. We used the parameters from the best fitting model to estimate ancestral range probabilities and conduct stochastic mapping, from which we estimated the number and type of biogeographical events. Results Our best model supported South America as the ancestral area for the Solanaceae and its major clades. The BSM analyses showed that dispersal events, particularly range expansions, are the principal mode by which members of the family have spread beyond South America. Main conclusions For Solanaceae, South America is not only the family's current centre of diversity but also its ancestral range, and dispersal was the principal driver of range evolution. The most common dispersal patterns involved range expansions from South America into North and Central America, while dispersal in the reverse direction was less common. This directionality may be due to the early build-up of species richness in South America, resulting in large pool of potential migrants. These results demonstrate the utility of BSM not only for estimating ancestral ranges but also in inferring the frequency, direction and timing of biogeographical events in a statistically rigorous framework.

Journal ArticleDOI
01 Jun 2017-Nature
TL;DR: This work relates variations in speciation rates to six key patterns of biodiversity worldwide, including the species–area relationship, latitudinal gradients in species and genetic diversity, and between-habitat differences in species richness.
Abstract: Global patterns of biodiversity are influenced by spatial and environmental variations in the rate at which new species form. We relate variations in speciation rates to six key patterns of biodiversity worldwide, including the species-area relationship, latitudinal gradients in species and genetic diversity, and between-habitat differences in species richness. Although they sometimes mirror biodiversity patterns, recent rates of speciation, at the tip of the tree of life, are often highest where species richness is low. Speciation gradients therefore shape, but are also shaped by, biodiversity gradients and are often more useful for predicting future patterns of biodiversity than for interpreting the past.

Journal ArticleDOI
TL;DR: The most comprehensive spatially explicit data set available for parasites, projected range shifts in a changing climate, and estimated extinction rates for eight major parasite clades is compiled, finding that ectoparasites (especially ticks) fare disproportionately worse than endopar asites.
Abstract: Climate change is a well-documented driver of both wildlife extinction and disease emergence, but the negative impacts of climate change on parasite diversity are undocumented. We compiled the most comprehensive spatially explicit data set available for parasites, projected range shifts in a changing climate, and estimated extinction rates for eight major parasite clades. On the basis of 53,133 occurrences capturing the geographic ranges of 457 parasite species, conservative model projections suggest that 5 to 10% of these species are committed to extinction by 2070 from climate-driven habitat loss alone. We find no evidence that parasites with zoonotic potential have a significantly higher potential to gain range in a changing climate, but we do find that ectoparasites (especially ticks) fare disproportionately worse than endoparasites. Accounting for host-driven coextinctions, models predict that up to 30% of parasitic worms are committed to extinction, driven by a combination of direct and indirect pressures. Despite high local extinction rates, parasite richness could still increase by an order of magnitude in some places, because species successfully tracking climate change invade temperate ecosystems and replace native species with unpredictable ecological consequences.

Book ChapterDOI
TL;DR: How network-based principles might guide management policies to better live with invaders, rather than to undertake the daunting (and often illusory) task of eradicating them one by one is discussed.
Abstract: We review empirical studies on how bioinvasions alter food webs and how a food-web perspective may change their prediction and management. Predation is found to underlie the most spectacular damage in invaded systems, sometimes cascading down to primary producers. Indirect trophic effects (exploitative and apparent competition) also affect native species, but rarely provoke extinctions, while invaders often have positive bottom-up effects on higher trophic levels. As a result of these trophic interactions, and of nontrophic ones such as mutualisms or ecosystem engineering, invasions can profoundly modify the structure of the entire food web. While few studies have been undertaken at this scale, those that have highlight how network properties such as species richness, phenotypic diversity, and functional diversity, limit the likelihood and impacts of invasions by saturating niche space. Vulnerable communities have unsaturated niche space mainly because of evolutionary history in isolation (islands), dispersal limitation, or anthropogenic disturbance. Evolution also modulates the insertion of invaders into a food web. Exotics and natives are evolutionarily new to one another, and invasion tends to retain alien species that happen to have advantage over residents in trophic interactions. Resident species, therefore, often rapidly evolve traits to better tolerate or exploit invaders—a process that may eventually restore more balanced food webs and prevent extinctions. We discuss how network-based principles might guide management policies to better live with invaders, rather than to undertake the daunting (and often illusory) task of eradicating them one by one.

Journal ArticleDOI
TL;DR: At the local scale, conversion of primary vegetation to agriculture has decreased plant diversity, whereas other drivers of change-e.g., climate warming, habitat fragmentation, and nitrogen deposition-have highly context-dependent effects, resulting in a distribution of temporal trends with a mean close to zero.
Abstract: Plant communities have undergone dramatic changes in recent centuries, although not all such changes fit with the dominant biodiversity-crisis narrative used to describe them. At the global scale, future declines in plant species diversity are highly likely given habitat conversion in the tropics, although few extinctions have been documented for the Anthropocene to date (<0.1%). Nonnative species introductions have greatly increased plant species richness in many regions of the world at the same time that they have led to the creation of new hybrid polyploid species by bringing previously isolated congeners into close contact. At the local scale, conversion of primary vegetation to agriculture has decreased plant diversity, whereas other drivers of change—e.g., climate warming, habitat fragmentation, and nitrogen deposition—have highly context-dependent effects, resulting in a distribution of temporal trends with a mean close to zero. These results prompt a reassessment of how conservation goals are defi...

Journal ArticleDOI
TL;DR: It is suggested that the regional-scale distribution pattern of soil fungal communities is predominantly mediated by plant community composition, and also by abiotic factors and geographical distance in arid and semi-arid temperate grasslands.
Abstract: Fungi play an important regulating role in terrestrial ecosystem functioning. However, their biogeographic distribution patterns along combined gradients of plant communities and environmental variables across regional spatial scales remain poorly understood. This knowledge gap is particularly pronounced in arid and semi-arid grassland ecosystems, which occupy one third of the terrestrial surface of China. Here, a regional-scale field investigation was conducted to collect soil samples from 290 plots at 52 sites along a 4000 km transect in temperate grasslands of northern China to assess the distribution patterns of fungal communities. The high-throughput Illumina sequencing revealed that soil fungal communities were dominated by Ascomycota, Basidiomycota and Zygomycota across the temperate grasslands. Fungal richness increased with plant species richness and mean annual precipitation (MAP). Bray-Cutis dissimilarities in soil fungal community composition between sites were significantly correlated with plant community composition, geographical distance, and abiotic factors including MAP, mean annual temperature, soil pH, and soil organic carbon. Variation partitioning analysis revealed that variation in fungal community composition was mainly explained by plant community composition, followed by geographical distance and abiotic factors. Structural equation models further highlighted the significant role of plant species richness in determining soil fungal richness. Taken together, these results suggest that the regional-scale distribution pattern of soil fungal communities is predominantly mediated by plant community composition, and also by abiotic factors and geographical distance in arid and semi-arid temperate grasslands.

Journal ArticleDOI
TL;DR: In this article, the relative importance of environmental factors and forest attributes for ecosystem functioning, especially for the tropics, was investigated for the Neotropics, where water availability has a strong positive effect on biomass stocks and growth, and a future predicted increase in (atmospheric) drought might reduce carbon storage.
Abstract: Aim: Tropical forests account for a quarter of the global carbon storage and a third of the terrestrial productivity. Few studies have teased apart the relative importance of environmental factors and forest attributes for ecosystem functioning, especially for the tropics. This study aims to relate aboveground biomass (AGB) and biomass dynamics (i.e., net biomass productivity and its underlying demographic drivers: biomass recruitment, growth and mortality) to forest attributes (tree diversity, community-mean traits and stand basal area) and environmental conditions (water availability, soil fertility and disturbance). Location: Neotropics. Methods: We used data from 26 sites, 201 1-ha plots and >92,000 trees distributed across the Neotropics. We quantified for each site water availability and soil total exchangeable bases and for each plot three key community-weighted mean functional traits that are important for biomass stocks and productivity. We used structural equation models to test the hypothesis that all drivers have independent, positive effects on biomass stocks and dynamics. Results: Of the relationships analysed, vegetation attributes were more frequently associated significantly with biomass stocks and dynamics than environmental conditions (in 67 vs. 33% of the relationships). High climatic water availability increased biomass growth and stocks, light disturbance increased biomass growth, and soil bases had no effect. Rarefied tree species richness had consistent positive relationships with biomass stocks and dynamics, probably because of niche complementarity, but was not related to net biomass productivity. Community-mean traits were good predictors of biomass stocks and dynamics. Main conclusions: Water availability has a strong positive effect on biomass stocks and growth, and a future predicted increase in (atmospheric) drought might, therefore, potentially reduce carbon storage. Forest attributes, including species diversity and community-weighted mean traits, have independent and important relationships with AGB stocks, dynamics and ecosystem functioning, not only in relatively simple temperate systems, but also in structurally complex hyper-diverse tropical forests.

Journal ArticleDOI
TL;DR: In this paper, a 2-year study of eighteen cover crop treatments ranging in diversity from one to eight species was conducted to explore the relationship between multifunctionality and several diversity indices.
Abstract: Summary Ecological studies identifying a positive relationship between biodiversity and ecosystem services motivate projections that higher plant diversity will increase services from agroecosystems. While this idea is compelling, evidence of generalizable relationships between biodiversity and ecosystem services that could be broadly applied in agricultural systems is lacking. Cover crops grown in rotation with cash crops are a realistic strategy to increase agroecosystem diversity. We evaluated the prediction that further increasing diversity with cover crop polycultures would enhance ecosystem services and multifunctionality in a 2-year study of eighteen cover crop treatments ranging in diversity from one to eight species. Five ecosystem services were measured in each cover crop system and regression analysis used to explore the relationship between multifunctionality and several diversity indices. As expected, there was a positive relationship between species richness and multifunctionality, but it only explained a small fraction of variance in ecosystem services (marginal R2 = 0·05). In contrast, indices of functional diversity, particularly the distribution of trait abundances, were stronger predictors of multifunctionality (marginal R2 = 0·15–0·38). Synthesis and application. In a corn production system, simply increasing cover crop species richness will have a small impact on agroecosystem services, but designing polycultures that maximize functional diversity may lead to agroecosystems with greater multifunctionality.

Journal ArticleDOI
TL;DR: Publicly available 18S barcoding data was used to define biases that may limit analyses and to gain an overview of the planktonic microbial eukaryotic diversity in freshwater ecosystems, and it was showed that Fungi, Stramenopiles and Viridiplantae play central role in lake ecosystems.

Journal ArticleDOI
TL;DR: It is concluded that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than byChanges in plant species richness per se.
Abstract: Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil microbial community composition in a long-term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se.

Journal ArticleDOI
TL;DR: In this article, the authors performed a complete review of the different studies reporting land use and land cover changes and performed a joint analysis of their results using an integrated comprehensive approach, and related the variation of LULC change to latitude, time period and vascular plant richness using generalized linear models.
Abstract: The understanding of the spatial and temporal patterns in land use and land cover (LULC) change is a key issue for conservation efforts. In the Chilean hotspot, different studies have attempted to understand variations of LULC change. Nevertheless, a broader understanding of common patterns and variability of LULC over the entire range of the hotspot is lacking. We performed a complete review of the different studies reporting LULC changes and performed a joint analysis of their results using an integrated comprehensive approach. We related the variation of LULC change to latitude, time period and vascular plant richness using generalized linear models. Overall, there were nine studies, which covered 36.5 % of the study area, and reported the loss of 19 % of native forest (782,120 ha) between 1973 and 2011. The highest net forest loss was observed in the 1970–1990 period. This decreased in the 1990–2000 period and rose again in the 2000–2010 period. This result reveals a continuous forest loss in the last 40 years. Conversion of native forest to shrublands is the most important contributor to net native forest loss, accounting for 45 % of the loss. However, in the area of greatest species richness native forests are mainly converted to exotic tree plantations. Chilean forestry model has proved successful in expanding exotic tree plantation, but so far it has not been compatible with native forest conservation and restoration. It is imperative to design a new forestry policy to assure the conservation of one of the most unique biodiversity hotspots worldwide.

Journal ArticleDOI
TL;DR: Differences in species richness between fragmented and non‐fragmented habitats increase over time, demonstrating that long‐term studies are needed to understand the effects of fragmentation, above and beyond the amount of habitat lost.
Abstract: For a half century, habitat configuration – the arrangement of habitat patches within a landscape – has been central to theories of landscape ecology, population dynamics, and community assembly, in addition to conservation strategies. A recent hypothesis advanced by Fahrig (2013) would, if supported, greatly diminish the relevance of habitat configuration as a predictor of diversity. The Habitat Amount Hypothesis posits that the sample area effect overrides patch size and patch isolation effects of habitat fragmentation on species richness. It predicts that the amount of habitat in a local landscape, regardless of configuration, is the main landscape-level determinant of species richness. If habitat amount is indeed the major, landscape-level driver of species richness, the slopes of the species-area relationship (SAR) for otherwise similar fragmented and unfragmented landscapes should be indistinguishable. We tested the Habitat Amount Hypothesis with data from two replicated and controlled habitat fragmentation experiments that disentangle the effects of habitat amount and configuration. One experiment provided time-series data on plant species richness and the other on micro-arthropod species richness. We found that, relative to less fragmented habitats, the SARs for fragmented habitats have significantly higher slopes and that the magnitude of the difference in slopes increased over time. Relatively more species were lost in smaller areas when fragments were more isolated. In both experiments, the proportion of species lost due to increased habitat fragmentation was nearly identical to the proportion lost due to reduced habitat amount. Our results provide a direct and experimentally derived refutation of the Habitat Amount Hypothesis, supporting the long-held view that in addition to area, patch isolation and configuration are important determinants of species richness. Differences in species richness between fragmented and non-fragmented habitats increase over time, demonstrating that long-term studies are needed to understand the effects of fragmentation, above and beyond the amount of habitat lost. This article is protected by copyright. All rights reserved.