scispace - formally typeset
Search or ask a question

Showing papers by "University of Coimbra published in 2010"


Journal ArticleDOI
TL;DR: The 2014 RCC guideline has been updated by a multidisciplinary panel using the highest methodological standards, and provides the best and most reliable contemporary evidence base for RCC management.

3,100 citations


Journal ArticleDOI
Dalila Pinto1, Alistair T. Pagnamenta2, Lambertus Klei3, Richard Anney4  +178 moreInstitutions (46)
15 Jul 2010-Nature
TL;DR: The genome-wide characteristics of rare (<1% frequency) copy number variation in ASD are analysed using dense genotyping arrays to reveal many new genetic and functional targets in ASD that may lead to final connected pathways.
Abstract: The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.

1,919 citations


Journal ArticleDOI
TL;DR: An extensive review of existing data in the form of tables, encompassing many therapeutic classes is presented and the different contamination sources as well as fate and both acute and chronic effects on non-target organisms are reviewed.

1,281 citations


Journal ArticleDOI
08 Jul 2010-Nature
TL;DR: The root-mean-square charge radius, rp, has been determined with an accuracy of 2 per cent by electron–proton scattering experiments, and the present most accurate value of rp (with an uncertainty of 1 per cent) is given by the CODATA compilation of physical constants.
Abstract: Considering that the proton is a basic subatomic component of all ordinary matter — as well as being ubiquitous in its solo role as the hydrogen ion H+ — there are some surprising gaps in our knowledge of its structure and behaviour. A collaborative project to determine the root-mean-square charge radius of the proton to better than the 1% accuracy of the current 'best' value suggests that those knowledge gaps may be greater than was thought. The new determination comes from a technically challenging spectroscopic experiment — the measurement of the Lamb shift (the energy difference between a specific pair of energy states) in 'muonic hydrogen', an exotic atom in which the electron is replaced by its heavier twin, the muon. The result is unexpected: a charge radius about 4% smaller than the previous value. The discrepancy remains unexplained. Possible implications are that the value of the most accurately determined fundamental constant, the Rydberg constant, will need to be revised — or that the validity of quantum electrodynamics theory is called into question. Here, a technically challenging spectroscopic experiment is described: the measurement of the muonic Lamb shift. The results lead to a new determination of the charge radius of the proton. The new value is 5.0 standard deviations smaller than the previous world average, a large discrepancy that remains unexplained. Possible implications of the new finding are that the value of the Rydberg constant will need to be revised, or that the validity of quantum electrodynamics theory is called into question. The proton is the primary building block of the visible Universe, but many of its properties—such as its charge radius and its anomalous magnetic moment—are not well understood. The root-mean-square charge radius, rp, has been determined with an accuracy of 2 per cent (at best) by electron–proton scattering experiments1,2. The present most accurate value of rp (with an uncertainty of 1 per cent) is given by the CODATA compilation of physical constants3. This value is based mainly on precision spectroscopy of atomic hydrogen4,5,6,7 and calculations of bound-state quantum electrodynamics (QED; refs 8, 9). The accuracy of rp as deduced from electron–proton scattering limits the testing of bound-state QED in atomic hydrogen as well as the determination of the Rydberg constant (currently the most accurately measured fundamental physical constant3). An attractive means to improve the accuracy in the measurement of rp is provided by muonic hydrogen (a proton orbited by a negative muon); its much smaller Bohr radius compared to ordinary atomic hydrogen causes enhancement of effects related to the finite size of the proton. In particular, the Lamb shift10 (the energy difference between the 2S1/2 and 2P1/2 states) is affected by as much as 2 per cent. Here we use pulsed laser spectroscopy to measure a muonic Lamb shift of 49,881.88(76) GHz. On the basis of present calculations11,12,13,14,15 of fine and hyperfine splittings and QED terms, we find rp = 0.84184(67) fm, which differs by 5.0 standard deviations from the CODATA value3 of 0.8768(69) fm. Our result implies that either the Rydberg constant has to be shifted by −110 kHz/c (4.9 standard deviations), or the calculations of the QED effects in atomic hydrogen or muonic hydrogen atoms are insufficient.

1,152 citations


Journal ArticleDOI
TL;DR: Disease-related causes, in particular pulmonary fibrosis, PAH and cardiac causes, accounted for the majority of deaths in SSc.
Abstract: Objectives To determine the causes and predictors of mortality in systemic sclerosis (SSc). Methods Patients with SSc (n=5860) fulfilling the American College of Rheumatology criteria and prospectively followed in the EULAR Scleroderma Trials and Research (EUSTAR) cohort were analysed. EUSTAR centres completed a structured questionnaire on cause of death and comorbidities. Kaplan-Meier and Cox proportional hazards models were used to analyse survival in SSc subgroups and to identify predictors of mortality. Results Questionnaires were obtained on 234 of 284 fatalities. 55% of deaths were attributed directly to SSc and 41% to non-SSc causes; in 4% the cause of death was not assigned. Of the SSc-related deaths, 35% were attributed to pulmonary fibrosis, 26% to pulmonary arterial hypertension (PAH) and 26% to cardiac causes (mainly heart failure and arrhythmias). Among the non-SSc-related causes, infections (33%) and malignancies (31%) were followed by cardiovascular causes (29%). Of the non-SSc-related fatalities, 25% died of causes in which SSc-related complications may have participated (pneumonia, sepsis and gastrointestinal haemorrhage). Independent risk factors for mortality and their HR were: proteinuria (HR 3.34), the presence of PAH based on echocardiography (HR 2.02), pulmonary restriction (forced vital capacity below 80% of normal, HR 1.64), dyspnoea above New York Heart Association class II (HR 1.61), diffusing capacity of the lung (HR 1.20 per 10% decrease), patient age at onset of Raynaud's phenomenon (HR 1.30 per 10 years) and the modified Rodnan skin score (HR 1.20 per 10 score points). Conclusion Disease-related causes, in particular pulmonary fibrosis, PAH and cardiac causes, accounted for the majority of deaths in SSc.

1,010 citations


Journal ArticleDOI
TL;DR: The diversity and ecology of metal resistant SPB are highlighted and their potential role in phytoremediation of heavy metals is discussed and an increase in plant growth and metal uptake will further enhance the effectiveness of phytOREmediation processes.

923 citations


Journal ArticleDOI
TL;DR: It is proposed that the assessment of trait–service clusters will represent a crucial step in ecosystem service monitoring and in balancing the delivery of multiple, and sometimes conflicting, services in ecosystem management.
Abstract: Managing ecosystems to ensure the provision of multiple ecosystem services is a key challenge for applied ecology. Functional traits are receiving increasing attention as the main ecological attributes by which different organisms and biological communities influence ecosystem services through their effects on underlying ecosystem processes. Here we synthesize concepts and empirical evidence on linkages between functional traits and ecosystem services across different trophic levels. Most of the 247 studies reviewed considered plants and soil invertebrates, but quantitative trait–service associations have been documented for a range of organisms and ecosystems, illustrating the wide applicability of the trait approach. Within each trophic level, specific processes are affected by a combination of traits while particular key traits are simultaneously involved in the control of multiple processes. These multiple associations between traits and ecosystem processes can help to identify predictable trait–service clusters that depend on several trophic levels, such as clusters of traits of plants and soil organisms that underlie nutrient cycling, herbivory, and fodder and fibre production. We propose that the assessment of trait–service clusters will represent a crucial step in ecosystem service monitoring and in balancing the delivery of multiple, and sometimes conflicting, services in ecosystem management.

817 citations


Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, A. A. Abdelalim4  +3098 moreInstitutions (192)
TL;DR: In this article, the authors used the ATLAS detector to detect dijet asymmetry in the collisions of lead ions at the Large Hadron Collider and found that the transverse energies of dijets in opposite hemispheres become systematically more unbalanced with increasing event centrality, leading to a large number of events which contain highly asymmetric di jets.
Abstract: By using the ATLAS detector, observations have been made of a centrality-dependent dijet asymmetry in the collisions of lead ions at the Large Hadron Collider. In a sample of lead-lead events with a per-nucleon center of mass energy of 2.76 TeV, selected with a minimum bias trigger, jets are reconstructed in fine-grained, longitudinally segmented electromagnetic and hadronic calorimeters. The transverse energies of dijets in opposite hemispheres are observed to become systematically more unbalanced with increasing event centrality leading to a large number of events which contain highly asymmetric dijets. This is the first observation of an enhancement of events with such large dijet asymmetries, not observed in proton-proton collisions, which may point to an interpretation in terms of strong jet energy loss in a hot, dense medium.

630 citations


Journal ArticleDOI
TL;DR: Evidence indicating that mitochondrial dysfunction has an early and preponderant role in Alzheimer's disease is discussed, and the link between mitochondrial dysfunction and autophagy in Alzheimer’s disease is also discussed.

619 citations


Journal ArticleDOI
TL;DR: Current knowledge about the involvement of neuroinflammation in AD pathogenesis is discussed, focusing on phenotypic and functional responses of microglia, astrocytes and neurons in this process.
Abstract: Alzheimers disease (AD) is the most common neurodegenerative disorder that affects the elderly. The increase of lifeexpectancy is transforming AD into a major health-care problem. AD is characterized by a progressive impairment of memory and other cognitive skills leading to dementia. The major pathogenic factor associated to AD seems to be amyloid-beta peptide (Aβ) oligomers that tend to accumulate extracellularly as amyloid deposits and are associated with reactive microglia and astrocytes as well as with degeneration of neuronal processes. The involvement of microglia and astrocytes in the onset and progress of neurodegenerative process in AD is becoming increasingly recognized, albeit it is commonly accepted that neuroinflammation and oxidative stress can have both detrimental and beneficial influences on the neural tissue. However, little is known about the interplay of microglia, astrocytes and neurons in response to Aβ, especially in the early phases of AD. This review discusses current knowledge about the involvement of neuroinflammation in AD pathogenesis, focusing on phenotypic and functional responses of microglia, astrocytes and neurons in this process. The abnormal production by glia cells of pro-inflammatory cytokines, chemokines and the complement system, as well as reactive oxygen and nitrogen species, can disrupt nerve terminals activity causing dysfunction and loss of synapses, which correlates with memory decline; these are phenomena preceding the neuronal death associated with late stages of AD. Thus, therapeutic strategies directed at controlling the activation of microglia and astrocytes and the excessive production of pro-inflammatory and pro-oxidant factors may be valuable to control neurodegeneration in dementia.

540 citations


Journal ArticleDOI
TL;DR: First dark matter results from the analysis of 11.17 live days of nonblind data are presented, which constrains the interpretation of the CoGeNT and DAMA signals as being due to spin-independent, elastic, light mass WIMP interactions.
Abstract: The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso in Italy, is designed to search for dark matter weakly interacting massive particles (WIMPs) scattering off 62 kg of liquid xenon in an ultralow background dual-phase time projection chamber. In this Letter, we present first dark matter results from the analysis of 11.17 live days of nonblind data, acquired in October and November 2009. In the selected fiducial target of 40 kg, and within the predefined signal region, we observe no events and hence exclude spin-independent WIMP-nucleon elastic scattering cross sections above 3.4 × 10⁻⁴⁴ cm² for 55 GeV/c² WIMPs at 90% confidence level. Below 20 GeV/c², this result constrains the interpretation of the CoGeNT and DAMA signals as being due to spin-independent, elastic, light mass WIMP interactions.

Journal ArticleDOI
TL;DR: It is suggested that the development of indicators using functional traits could complement, rather than replace, the existent biodiversity monitoring and the comparison of the effect of land use changes on biodiversity is facilitated and is expected to positively influence conservation management practices.
Abstract: Rigorous and widely applicable indicators of biodiversity are needed to monitor the responses of ecosystems to global change and design effective conservation schemes. Among the potential indicators of biodiversity, those based on the functional traits of species and communities are interesting because they can be generalized to similar habitats and can be assessed by relatively rapid field assessment across eco-regions. Functional traits, however, have as yet been rarely considered in current common monitoring schemes. Moreover, standardized procedures of trait measurement and analyses have almost exclusively been developed for plants but different approaches have been used for different groups of organisms. Here we review approaches using functional traits as biodiversity indicators focussing not on plants as usual but particularly on animal groups that are commonly considered in different biodiversity monitoring schemes (benthic invertebrates, collembolans, above ground insects and birds). Further, we introduce a new framework based on functional traits indices and illustrate it using case studies where the traits of these organisms can help monitoring the response of biodiversity to different land use change drivers. We propose and test standard procedures to integrate different components of functional traits into biodiversity monitoring schemes across trophic levels and disciplines. We suggest that the development of indicators using functional traits could complement, rather than replace, the existent biodiversity monitoring. In this way, the comparison of the effect of land use changes on biodiversity is facilitated and is expected to positively influence conservation management practices.


Journal ArticleDOI
TL;DR: A critical review on OTA occurrence reported by recent studies worldwide focusing on unprocessed and processed cereal foodstuffs is made in this work, with special attention drawn to the major cereal derived products.

Journal ArticleDOI
01 Nov 2010-Diabetes
TL;DR: In this article, the effects of IL-1β and TNF-α on retinal endothelial cell permeability were compared and the molecular mechanisms by which TNFα increases cell leakage were elucidated, which suggests that PKCζ may provide a specific therapeutic target for the prevention of vascular permeability in retinal diseases characterized by elevated TNF, including diabetic retinopathy.
Abstract: OBJECTIVE Tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β) are elevated in the vitreous of diabetic patients and in retinas of diabetic rats associated with increased retinal vascular permeability. However, the molecular mechanisms underlying retinal vascular permeability induced by these cytokines are poorly understood. In this study, the effects of IL-1β and TNF-α on retinal endothelial cell permeability were compared and the molecular mechanisms by which TNF-α increases cell permeability were elucidated. RESEARCH DESIGN AND METHODS Cytokine-induced retinal vascular permeability was measured in bovine retinal endothelial cells (BRECs) and rat retinas. Western blotting, quantitative real-time PCR, and immunocytochemistry were performed to determine tight junction protein expression and localization. RESULTS IL-1β and TNF-α increased BREC permeability, and TNF-α was more potent. TNF-α decreased the protein and mRNA content of the tight junction proteins ZO-1 and claudin-5 and altered the cellular localization of these tight junction proteins. Dexamethasone prevented TNF-α–induced cell permeability through glucocorticoid receptor transactivation and nuclear factor-kappaB (NF-κB) transrepression. Preventing NF-κB activation with an inhibitor κB kinase (IKK) chemical inhibitor or adenoviral overexpression of inhibitor κB alpha (IκBα) reduced TNF-α–stimulated permeability. Finally, inhibiting protein kinase C zeta (PKCζ) using both a peptide and a novel chemical inhibitor reduced NF-κB activation and completely prevented the alterations in the tight junction complex and cell permeability induced by TNF-α in cell culture and rat retinas. CONCLUSIONS These results suggest that PKCζ may provide a specific therapeutic target for the prevention of vascular permeability in retinal diseases characterized by elevated TNF-α, including diabetic retinopathy.

Journal ArticleDOI
TL;DR: The neuroinflammatory hypothesis of delirium is explored based on recent evidence derived from animal and human studies and shows compelling evidence that acute peripheral inflammatory stimulation induces activation of brain parenchymal cells, expression of proinflammatory cytokines and inflammatory mediators in the central nervous system.
Abstract: Delirium is a neuropsychiatric syndrome characterized by a sudden and global impairment in consciousness, attention and cognition. It is particularly frequent in elderly subjects with medical or surgical conditions and is associated with short- and long-term adverse outcomes. The pathophysiology of delirium remains poorly understood as it involves complex multi-factorial dynamic interactions between a diversity of risk factors. Several conditions associated with delirium are characterized by activation of the inflammatory cascade with acute release of inflammatory mediators into the bloodstream. There is compelling evidence that acute peripheral inflammatory stimulation induces activation of brain parenchymal cells, expression of proinflammatory cytokines and inflammatory mediators in the central nervous system. These neuroinflammatory changes induce neuronal and synaptic dysfunction and subsequent neurobehavioural and cognitive symptoms. Furthermore, ageing and neurodegenerative disorders exaggerate microglial responses following stimulation by systemic immune stimuli such as peripheral inflammation and/or infection. In this review we explore the neuroinflammatory hypothesis of delirium based on recent evidence derived from animal and human studies.

Journal ArticleDOI
TL;DR: The types of descriptive data that should be included in the methods sections of relevant manuscripts are listed to improve the reliability and usefulness of research based on long-term studies of any secondary hole-nesting species using artificial nestboxes for breeding or roosting.
Abstract: The widespread use of artificial nestboxes has led to significant advances in our knowledge of the ecology, behaviour and physiology of cavity nesting birds, especially small passerines. Nestboxes have made it easier to perform routine monitoring and experimental manipulation of eggs or nestlings, and also repeatedly to capture, identify and manipulate the parents. However, when comparing results across study sites the use of nestboxes may also introduce a potentially significant confounding variable in the form of differences in nestbox design amongst studies, such as their physical dimensions, placement height, and the way in which they are constructed and maintained. However, the use of nestboxes may also introduce an unconsidered and potentially significant confounding variable due to differences in nestbox design amongst studies, such as their physical dimensions, placement height, and the way in which they are constructed and maintained. Here we review to what extent the characteristics of artificial nestboxes (e.g. size, shape, construction material, colour) are documented in the 'methods' sections of publications involving hole-nesting passer- ine birds using natural or excavated cavities or artificial nestboxes for reproduction and roosting. Despite explicit previ- ous recommendations that authors describe in detail the characteristics of the nestboxes used, we found that the description of nestbox characteristics in most recent publications remains poor and insufficient. We therefore list the types of descriptive data that should be included in the methods sections of relevant manuscripts and justify this by discussing how variation in nestbox characteristics can affect or confound conclusions from nestbox studies. We also propose several recommendations to improve the reliability and usefulness of research based on long-term studies of any secondary hole-nesting species using artificial nestboxes for breeding or roosting.

Journal ArticleDOI
TL;DR: In this article, the authors used a widespread macroalga often involved in blooms, Ulva spp., to investigate how supply of nitrogen (N) and phosphorus (P), the two main potential growth-limiting nutrients, influence macroalgal growth in temperate and tropical coastal waters ranging from low-to high-nutrient supplies.
Abstract: Receiving coastal waters and estuaries are among the most nutrient-enriched environments on earth, and one of the symptoms of the resulting eutrophication is the proliferation of opportunistic, fast-growing marine seaweeds. Here, we used a widespread macroalga often involved in blooms, Ulva spp., to investigate how supply of nitrogen (N) and phosphorus (P), the two main potential growth-limiting nutrients, influence macroalgal growth in temperate and tropical coastal waters ranging from low- to high-nutrient supplies. We carried out N and P enrichment field experiments on Ulva spp. in seven coastal systems, with one of these systems represented by three different subestuaries, for a total of nine sites. We showed that rate of growth of Ulva spp. was directly correlated to annual dissolved inorganic nitrogen (DIN) concentrations, where growth increased with increasing DIN concentration. Internal N pools of macroalgal fronds were also linked to increased DIN supply, and algal growth rates were tightly coupled to these internal N pools. The increases in DIN appeared to be related to greater inputs of wastewater to these coastal waters as indicated by high δ15N signatures of the algae as DIN increased. N and P enrichment experiments showed that rate of macroalgal growth was controlled by supply of DIN where ambient DIN concentrations were low, and by P where DIN concentrations were higher, regardless of latitude or geographic setting. These results suggest that understanding the basis for macroalgal blooms, and management of these harmful phenomena, will require information as to nutrient sources, and actions to reduce supply of N and P in coastal waters concerned.

Journal ArticleDOI
TL;DR: In this article, a study of cortical bone samples of different origins (human and animal) subjected to different calcination temperatures (600, 900 and 1200 8C) with regard to their chemical and structural properties was performed.

Journal ArticleDOI
TL;DR: The current knowledge of the mechanisms responsible for the cellular uptake of cell-penetrating peptides, including the S413-PV peptide, are discussed, and the potential of peptide-based formulations to mediate nucleic acid delivery is discussed.
Abstract: The successful clinical application of nucleic acid-based therapeutic strategies has been limited by the poor delivery efficiency achieved by existing vectors The development of alternative delivery systems for improved biological activity is, therefore, mandatory Since the seminal observations two decades ago that the Tat protein, and derived peptides, can translocate across biological membranes, cell-penetrating peptides (CPPs) have been considered one of the most promising tools to improve non-invasive cellular delivery of therapeutic molecules Despite extensive research on the use of CPPs for this purpose, the exact mechanisms underlying their cellular uptake and that of peptide conjugates remain controversial Over the last years, our research group has been focused on the S413-PV cell-penetrating peptide, a prototype of this class of peptides that results from the combination of 13-amino-acid cell penetrating sequence derived from the Dermaseptin S4 peptide with the SV40 large T antigen nuclear localization signal By performing an extensive biophysical and biochemical characterization of this peptide and its analogs, we have gained important insights into the mechanisms governing the interaction of CPPs with cells and their translocation across biological membranes More recently, we have started to explore this peptide for the intracellular delivery of nucleic acids (plasmid DNA, siRNA and oligonucleotides) In this review we discuss the current knowledge of the mechanisms responsible for the cellular uptake of cell-penetrating peptides, including the S413-PV peptide, and the potential of peptide-based formulations to mediate nucleic acid delivery

Journal ArticleDOI
TL;DR: Facts and perspectives on the Warburg effect for the 21st century are presented, characterized by a shift from respiration to fermentation, which has been later named the Warberg effect.

Journal ArticleDOI
TL;DR: Evidence showing that mitochondrial dysfunction has a central role in the pathogenesis of Alzheimer's, Parkinson's and Huntington's diseases and amyotrophic lateral sclerosis is discussed and the potential therapeutic efficacy of metabolic antioxidants, mitochondria-directed antioxidants and Szeto-Schiller peptides are debated.

Journal ArticleDOI
TL;DR: It is found that the enhanced suppressive potential of IL‐1β‐induced MDSC was due to the activity of a novel subset of M DSC lacking Ly6C expression, which identifies a novel IL‐ 1 β‐induced subset ofMDSC with unique functional properties.
Abstract: Chronic inflammation is associated with promotion of malignancy and tumor progression. Many tumors enhance the accumulation of myeloid-derived suppressor cells (MDSC), which contribute to tumor progression and growth by suppressing anti-tumor immune responses. Tumor-derived IL-1β secreted into the tumor microenvironment has been shown to induce the accumulation of MDSC possessing an enhanced capacity to suppress T cells. In this study, we found that the enhanced suppressive potential of IL-1β-induced MDSC was due to the activity of a novel subset of MDSC lacking Ly6C expression. This subset was present at low frequency in tumor-bearing mice in the absence of IL-1β-induced inflammation; however, under inflammatory conditions, Ly6C(neg) MDSC were predominant. Ly6C(neg) MDSC impaired NK cell development and functions in vitro and in vivo. These results identify a novel IL-1β-induced subset of MDSC with unique functional properties. Ly6C(neg) MDSC mediating NK cell suppression may thus represent useful targets for therapeutic interventions.

Journal ArticleDOI
TL;DR: Spinal mobility impairment in AS is independently determined both by irreversible spinal damage and by reversible spinal inflammation, as assessed by MRI in patients with ankylosing spondylitis.
Abstract: Objective To study the relationship between spinal mobility, radiographic damage of the spine and spinal inflammation as assessed by MRI in patients with ankylosing spondylitis (AS). Methods In this subanalysis of the Ankylosing Spondylitis Study for the Evaluation of Recombinant Infliximab Therapy cohort, 214 patients, representing an 80% random sample, were investigated. Only baseline data were used. MRI inflammation was assessed by the AS spinal MRI activity (ASspiMRI-a) score, structural damage by the modified Stoke AS Spine Score (mSASSS) and spinal mobility by the linear definition of the Bath Ankylosing Spondylitis Metrology Index (BASMI). Univariate correlations were calculated on baseline values using Spearman rank correlation. Independent associations between the variables of interest were investigated by multivariate linear regression analysis. Associations with clinical disease activity, C-reactive protein, disease duration, age, gender, body mass index and HLA-B27 status were also investigated. Subanalyses were performed according to disease duration. Results BASMI correlated moderately well with mSASSS (Spearman9s ρ=0.6) and weakly with ASspiMRI-a (ρ=0.3). A best-fit model for BASMI included both mSASSS (regression coefficient (B)=0.865, p 3 years B was greater for mSASSS than for ASspiMRI-a (0.924 vs 0.156). Conclusion Spinal mobility impairment in AS is independently determined both by irreversible spinal damage and by reversible spinal inflammation. Spinal mobility impairment is more influenced by spinal inflammation in early disease, and by structural damage in later disease.

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the possible impact of demand-side management and demand response on the integration of the growing intermittent resources in Portugal, with the aim of enabling the integration and management of the wind power intermittence in Portugal.

Journal ArticleDOI
TL;DR: Using combined proteomic and RNAi screening approaches, the dSTRIPAK PP2A complex is identified as a major regulator of Hpo signaling, suggesting this phosphatase complex prevents Hpo activation during development.


Journal ArticleDOI
TL;DR: Recent progresses in the understanding of the immunopathology of RA is reviewed with a special emphasis on the role of neutrophils, which are phagocytic leukocytes that play crucial roles in the acute defense against pathogens.

Journal ArticleDOI
TL;DR: The real and exciting possibility that caffeine consumption might be a prophylactic strategy and A2A receptor antagonists may be a novel therapeutic option to manage memory dysfunction both in AD and in other chronic neurodegenerative disorders where memory deficits occur is opened.
Abstract: Caffeine, the most widely consumed psychoactive drug, enhances attention/vigilance, stabilizes mood, and might also independently enhance cognitive performance. Notably, caffeine displays clearer and more robust beneficial effects on memory performance when memory is perturbed by stressful or noxious stimuli either in human or animal studies. Thus, caffeine restores memory performance in sleep-deprived or aged human individuals, a finding replicated in rodent animal models. Likewise, in animal models of Alzheimer's disease (AD), caffeine alleviates memory dysfunction, which is in accordance with the tentative inverse correlation between caffeine intake and the incidence of AD in different (but not all) cohorts. Caffeine also affords beneficial effects in animal models of conditions expected to impair memory performance such as Parkinson's disease, chronic stress, type 2 diabetes, attention deficit and hyperactivity disorder, early life convulsions, or alcohol-induced amnesia. Thus, caffeine should not be viewed as a cognitive enhancer but instead as a cognitive normalizer. Interestingly, these beneficial effects of caffeine on stress-induced memory disturbance are mimicked by antagonists of adenosine A2A receptors. This prominent role of A2A receptors in preventing memory deterioration is probably related to the synaptic localization of this receptor in limbic areas and its ability to control glutamatergic transmission, especially NMDA receptor-dependent plasticity, and to control apoptosis, brain metabolism, and the burden of neuroinflammation. This opens the real and exciting possibility that caffeine consumption might be a prophylactic strategy and A2A receptor antagonists may be a novel therapeutic option to manage memory dysfunction both in AD and in other chronic neurodegenerative disorders where memory deficits occur.

Journal ArticleDOI
TL;DR: An electrochemical nucleic acid (NA)-based biosensor is a biosensor that integrates a nucleic acids as the biological recognition element and an electrode as the electrochemical signal transducer.
Abstract: An electrochemical nucleic acid (NA)-based biosensor is a biosensor that integrates a nucleic acid as the biological recognition element and an electrode as the electrochemical signal transducer. The present report provides concepts, terms, and methodology related to biorecognition elements, detection principles, type of interactions to be addressed, and con- struction and performance of electrochemical NA biosensors, including their critical evalua- tion, which should be valuable for a wide audience, from academic, biomedical, environ- mental, and food-testing, drug-developing, etc. laboratories to sensor producers.