scispace - formally typeset
Search or ask a question
Institution

University of Erlangen-Nuremberg

EducationErlangen, Bayern, Germany
About: University of Erlangen-Nuremberg is a education organization based out in Erlangen, Bayern, Germany. It is known for research contribution in the topics: Population & Immune system. The organization has 42405 authors who have published 85600 publications receiving 2663922 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The development of new nanotechnologies such as photo- or electron-beam nanolithography, polymer demixing, nano-imprinting, compression molding, or the generation of TiO2 nanotubes of defined diameters (15–200 nm), has opened up the possibility of constructing biomimetic surfaces with a defined nanopattern, eliciting tissue-specific cellular responses by stimulating integrin clustering.
Abstract: The ultimate goal in the design of biomimetic materials for use in tissue engineering as permanent or resorbable tissue implants is to generate biocompatible scaffolds with appropriate biomechanical and chemical properties to allow the adhesion, ingrowth, and survival of cells. Recent efforts have therefore focused on the construction and modification of biomimetic surfaces targeted to support tissue-specific cell functions including adhesion, growth, differentiation, motility, and the expression of tissue-specific genes. Four decades of extensive research on the structure and biological influence of the extracellular matrix (ECM) on cell behavior and cell fate have shown that three types of information from the ECM are relevant for the design of biomimetic surfaces: (1) physical properties (elasticity, stiffness, resilience of the cellular environment), (2) specific chemical signals from peptide epitopes contained in a wide variety of extracelluar matrix molecules, and (3) the nanoscale topography of microenvironmental adhesive sites. Initial physical and chemical approaches aimed at improving the adhesiveness of biomaterial surfaces by sandblasting, particle coating, or etching have been supplemented by attempts to increase the bioactivity of biomaterials by coating them with ECM macromolecules, such as fibronectin, elastin, laminin, and collagens, or their integrin-binding epitopes including RGD, YIGSR, and GFOGER. Recently, the development of new nanotechnologies such as photo- or electron-beam nanolithography, polymer demixing, nano-imprinting, compression molding, or the generation of TiO2 nanotubes of defined diameters (15–200 nm), has opened up the possibility of constructing biomimetic surfaces with a defined nanopattern, eliciting tissue-specific cellular responses by stimulating integrin clustering. This development has provided new input into the design of novel biomaterials. The new technologies allowing the construction of a geometrically defined microenvironment for cells at the nanoscale should facilitate the investigation of nanotopography-dependent mechanisms of integrin-mediated cell signaling.

331 citations

Journal ArticleDOI
18 Aug 2017-Science
TL;DR: This study demonstrates that lubricant infusion represents an effective strategy to mitigate marine biofouling and provides insights into the physical mechanisms underlying adhesion prevention.
Abstract: Mussels are opportunistic macrofouling organisms that can attach to most immersed solid surfaces, leading to serious economic and ecological consequences for the maritime and aquaculture industries. We demonstrate that lubricant-infused coatings exhibit very low preferential mussel attachment and ultralow adhesive strengths under both controlled laboratory conditions and in marine field studies. Detailed investigations across multiple length scales—from the molecular-scale characterization of deposited adhesive proteins to nanoscale contact mechanics to macroscale live observations—suggest that lubricant infusion considerably reduces fouling by deceiving the mechanosensing ability of mussels, deterring secretion of adhesive threads, and decreasing the molecular work of adhesion. Our study demonstrates that lubricant infusion represents an effective strategy to mitigate marine biofouling and provides insights into the physical mechanisms underlying adhesion prevention.

331 citations

DOI
Claudia Backes1, Claudia Backes2, Amr M. Abdelkader3, Concepción Alonso4, Amandine Andrieux-Ledier5, Raul Arenal6, Raul Arenal7, Jon Azpeitia7, Nilanthy Balakrishnan8, Luca Banszerus9, Julien Barjon5, Ruben Bartali10, Sebastiano Bellani11, Claire Berger12, Claire Berger13, Reinhard Berger14, M.M. Bernal Ortega15, Carlo Bernard16, Peter H. Beton8, André Beyer17, Alberto Bianco18, Peter Bøggild19, Francesco Bonaccorso11, Gabriela Borin Barin20, Cristina Botas, Rebeca A. Bueno7, Daniel Carriazo21, Andres Castellanos-Gomez7, Meganne Christian, Artur Ciesielski18, Tymoteusz Ciuk, Matthew T. Cole, Jonathan N. Coleman2, Camilla Coletti11, Luigi Crema10, Huanyao Cun16, Daniela Dasler22, Domenico De Fazio3, Noel Díez, Simon Drieschner23, Georg S. Duesberg24, Roman Fasel20, Roman Fasel25, Xinliang Feng14, Alberto Fina15, Stiven Forti11, Costas Galiotis26, Costas Galiotis27, Giovanni Garberoglio28, Jorge M. Garcia7, Jose A. Garrido, Marco Gibertini29, Armin Gölzhäuser17, Julio Gómez, Thomas Greber16, Frank Hauke22, Adrian Hemmi16, Irene Hernández-Rodríguez7, Andreas Hirsch22, Stephen A. Hodge3, Yves Huttel7, Peter Uhd Jepsen19, I. Jimenez7, Ute Kaiser30, Tommi Kaplas31, HoKwon Kim29, Andras Kis29, Konstantinos Papagelis32, Konstantinos Papagelis26, Kostas Kostarelos33, Aleksandra Krajewska34, Kangho Lee24, Changfeng Li35, Harri Lipsanen35, Andrea Liscio, Martin R. Lohe14, Annick Loiseau5, Lucia Lombardi3, María Francisca López7, Oliver Martin22, Cristina Martín36, Lidia Martínez7, José A. Martín-Gago7, José I. Martínez7, Nicola Marzari29, Alvaro Mayoral37, Alvaro Mayoral6, John B. McManus2, Manuela Melucci, Javier Méndez7, Cesar Merino, Pablo Merino7, Andreas Meyer22, Elisa Miniussi16, Vaidotas Miseikis11, Neeraj Mishra11, Vittorio Morandi, Carmen Munuera7, Roberto Muñoz7, Hugo Nolan2, Luca Ortolani, A. K. Ott38, A. K. Ott3, Irene Palacio7, Vincenzo Palermo39, John Parthenios26, Iwona Pasternak40, Amalia Patanè8, Maurizio Prato41, Maurizio Prato21, Henri Prevost5, Vladimir Prudkovskiy12, Nicola M. Pugno42, Nicola M. Pugno43, Nicola M. Pugno44, Teófilo Rojo45, Antonio Rossi11, Pascal Ruffieux20, Paolo Samorì18, Léonard Schué5, Eki J. Setijadi10, Thomas Seyller46, Giorgio Speranza10, Christoph Stampfer9, I. Stenger5, Wlodek Strupinski40, Yuri Svirko31, Simone Taioli47, Simone Taioli28, Kenneth B. K. Teo, Matteo Testi10, Flavia Tomarchio3, Mauro Tortello15, Emanuele Treossi, Andrey Turchanin48, Ester Vázquez36, Elvira Villaro, Patrick Rebsdorf Whelan19, Zhenyuan Xia39, Rositza Yakimova, Sheng Yang14, G. Reza Yazdi, Chanyoung Yim24, Duhee Yoon3, Xianghui Zhang17, Xiaodong Zhuang14, Luigi Colombo49, Andrea C. Ferrari3, Mar García-Hernández7 
Heidelberg University1, Trinity College, Dublin2, University of Cambridge3, Autonomous University of Madrid4, Université Paris-Saclay5, University of Zaragoza6, Spanish National Research Council7, University of Nottingham8, RWTH Aachen University9, Kessler Foundation10, Istituto Italiano di Tecnologia11, University of Grenoble12, Georgia Institute of Technology13, Dresden University of Technology14, Polytechnic University of Turin15, University of Zurich16, Bielefeld University17, University of Strasbourg18, Technical University of Denmark19, Swiss Federal Laboratories for Materials Science and Technology20, Ikerbasque21, University of Erlangen-Nuremberg22, Technische Universität München23, Bundeswehr University Munich24, University of Bern25, Foundation for Research & Technology – Hellas26, University of Patras27, Center for Theoretical Studies, University of Miami28, École Polytechnique Fédérale de Lausanne29, University of Ulm30, University of Eastern Finland31, Aristotle University of Thessaloniki32, University of Manchester33, Polish Academy of Sciences34, Aalto University35, University of Castilla–La Mancha36, ShanghaiTech University37, University of Exeter38, Chalmers University of Technology39, Warsaw University of Technology40, University of Trieste41, Queen Mary University of London42, University of Trento43, Instituto Politécnico Nacional44, University of the Basque Country45, Chemnitz University of Technology46, Charles University in Prague47, University of Jena48, University of Texas at Dallas49
29 Jan 2020
TL;DR: In this article, the authors present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures, adopting a 'hands-on' approach, providing practical details and procedures as derived from literature and from the authors' experience, in order to enable the reader to reproduce the results.
Abstract: © 2020 The Author(s). We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resourceconsuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown.

330 citations

Journal ArticleDOI
TL;DR: It is demonstrated that by dissipation engineering, a non-Markovian interaction dynamics between the magnon and the microwave cavity photon can be achieved, which enables a magnon gradient memory to store information in the Magnon dark modes, which decouple from the microwave cavities and thus preserve a long lifetime.
Abstract: Extensive efforts have been expended in developing hybrid quantum systems to overcome the short coherence time of superconducting circuits by introducing the naturally long-lived spin degree of freedom. Among all the possible materials, single-crystal yttrium iron garnet has shown up recently as a promising candidate for hybrid systems, and various highly coherent interactions, including strong and even ultrastrong coupling, have been demonstrated. One distinct advantage in these systems is that spins form well-defined magnon modes, which allows flexible and precise tuning. Here we demonstrate that by dissipation engineering, a non-Markovian interaction dynamics between the magnon and the microwave cavity photon can be achieved. Such a process enables us to build a magnon gradient memory to store information in the magnon dark modes, which decouple from the microwave cavity and thus preserve a long lifetime. Our findings provide a promising approach for developing long-lifetime, multimode quantum memories.

330 citations

Journal ArticleDOI
TL;DR: Experimental evidence indicating that sulfated polysaccharides might become increasingly important in drug development for the prevention of sexually transmitted diseases in the near future is summarized.
Abstract: In recent years, many compounds having potent antiviral activity in cell culture have been detected and some of these compounds are currently undergoing either preclinical or clinical evaluation. Among these antiviral substances, naturally occurring sulfated polysaccharides and those from synthetic origin are noteworthy. Recently, several controversies over the molecular structures of sulfated polysaccharides, viral glycoproteins, and cell-surface receptors have been resolved, and many aspects of their antiviral activity have been elucidated. It has become clear that the antiviral properties of sulfated polysaccharides are not only a simple function of their charge density and chain length but also their detailed structural features. The in vivo efficacy of these compounds mostly corresponds to their ability to inhibit the attachment of the virion to the host cell surface although in some cases virucidal activity plays an additional role. This review summarizes experimental evidence indicating that sulfated polysaccharides might become increasingly important in drug development for the prevention of sexually transmitted diseases in the near future.

330 citations


Authors

Showing all 42831 results

NameH-indexPapersCitations
Hermann Brenner1511765145655
Richard B. Devereux144962116403
Manfred Paulini1411791110930
Daniel S. Berman141136386136
Peter Lang140113698592
Joseph Sodroski13854277070
Richard J. Johnson13788072201
Jun Lu135152699767
Michael Schmitt1342007114667
Jost B. Jonas1321158166510
Andreas Mussgiller127105973778
Matthew J. Budoff125144968115
Stefan Funk12550656955
Markus F. Neurath12493462376
Jean-Marie Lehn123105484616
Network Information
Related Institutions (5)
Technische Universität München
123.4K papers, 4M citations

96% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

95% related

Heidelberg University
119.1K papers, 4.6M citations

94% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

University of Padua
114.8K papers, 3.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023208
2022660
20215,163
20204,911
20194,593
20184,374