scispace - formally typeset
Journal ArticleDOI

Flood or drought: How do aerosols affect precipitation?

TLDR
A conceptual model is proposed that explains this apparent dichotomy of pristine tropical clouds with low CCN concentrations rain out too quickly to mature into long-lived clouds and heavily polluted clouds evaporate much of their water before precipitation can occur.
Abstract
Aerosols serve as cloud condensation nuclei (CCN) and thus have a substantial effect on cloud properties and the initiation of precipitation. Large concentrations of human-made aerosols have been reported to both decrease and increase rainfall as a result of their radiative and CCN activities. At one extreme, pristine tropical clouds with low CCN concentrations rain out too quickly to mature into long-lived clouds. On the other hand, heavily polluted clouds evaporate much of their water before precipitation can occur, if they can form at all given the reduced surface heating resulting from the aerosol haze layer. We propose a conceptual model that explains this apparent dichotomy.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Precipitation susceptibility in marine stratocumulus and shallow cumulus from airborne measurements

TL;DR: In this paper, the precipitation susceptibility (So) metric was used to examine if and why So behavior varies as a function of cloud type, using airborne measurements from four field campaigns on stratocumulus clouds and shallow cumulus clouds.
Journal ArticleDOI

Rapid growth of anthropogenic organic nanoparticles greatly alters cloud life cycle in the Amazon rainforest

TL;DR: In this article, the authors show that theOxidation products of natural hydrocarbons rapidly grow pollution nanoparticles to sizes large enough to alter clouds, and the authors propose a method to reduce the size of nanoparticles.
Journal ArticleDOI

Shallow Convective Cloud Field Lifetime as a Key Factor for Evaluating Aerosol Effects

TL;DR: Analysis of satellite observations and reanalysis data shows that the characteristic timescale of warm convective cloud fields is less than 12 hr, which implies that these clouds should be regarded as transient-state phenomena and therefore can be highly susceptible to changes in aerosol properties.
References
More filters

疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A

宁北芳, +1 more
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Journal ArticleDOI

Aerosols, climate, and the hydrological cycle

TL;DR: Human activities are releasing tiny particles (aerosols) into the atmosphere that enhance scattering and absorption of solar radiation, which can lead to a weaker hydrological cycle, which connects directly to availability and quality of fresh water, a major environmental issue of the 21st century.
Journal ArticleDOI

Global indirect aerosol effects: a review

TL;DR: In this article, the effects of aerosols on the climate system are discussed and different approaches how the climatic implications of these effects can be estimated globally as well as improvements that are needed in global climate models in order to better represent indirect aerosol effects are discussed.
Journal ArticleDOI

Climate Effects of Black Carbon Aerosols in China and India

TL;DR: A global climate model used to investigate possible aerosol contributions to trends in China and India found precipitation and temperature changes in the model that were comparable to those observed if the aerosols included a large proportion of absorbing black carbon (“soot”), similar to observed amounts.
Related Papers (5)