scispace - formally typeset
Journal ArticleDOI

Flood or drought: How do aerosols affect precipitation?

TLDR
A conceptual model is proposed that explains this apparent dichotomy of pristine tropical clouds with low CCN concentrations rain out too quickly to mature into long-lived clouds and heavily polluted clouds evaporate much of their water before precipitation can occur.
Abstract
Aerosols serve as cloud condensation nuclei (CCN) and thus have a substantial effect on cloud properties and the initiation of precipitation. Large concentrations of human-made aerosols have been reported to both decrease and increase rainfall as a result of their radiative and CCN activities. At one extreme, pristine tropical clouds with low CCN concentrations rain out too quickly to mature into long-lived clouds. On the other hand, heavily polluted clouds evaporate much of their water before precipitation can occur, if they can form at all given the reduced surface heating resulting from the aerosol haze layer. We propose a conceptual model that explains this apparent dichotomy.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Long-term volatility measurements of submicron atmospheric aerosol in Hyytiälä, Finland

Abstract: . The volatility of submicron atmospheric aerosol particles was investigated at a boreal forest site in Hyytiala, Finland from January 2008 to May 2010. These long-term observations allowed for studying the seasonal behavior of aerosol evaporation with a special focus on compounds that remained in the aerosol phase at 280 °C. The temperature-response of evaporation was also studied by heating the aerosol sample step-wise to six temperatures ranging from 80 °C to 280 °C. The mass fraction remaining after heating (MFR) was determined from the measured particle number size distributions before and after heating assuming a constant particle density (1.6 g cm−3). On average 19% of the total aerosol mass remained in the particulate phase at 280 °C. The particles evaporated less at low ambient temperatures during winter as compared with the warmer months. Black carbon (BC) fraction of aerosol mass correlated positively with the MFR at 280 °C, but could not explain it completely: most of the time a notable fraction of this non-volatile residual was something other than BC. Using additional information on ambient meteorological conditions and results from an Aerodyne aerosol mass spectrometer (AMS), the chemical composition of MFR at 280 °C and its seasonal behavior was further examined. Correlation analysis with ambient temperature and mass fractions of polycyclic aromatic hydrocarbons (PAHs) indicated that MFR at 280 °C is probably affected by anthropogenic emissions. On the other hand, results from the AMS analysis suggested that there may be very low-volatile organics, possibly organonitrates, in the non-volatile (at 280 °C) fraction of aerosol mass.
Journal ArticleDOI

Hygroscopic growth and cloud activation of pollen: a laboratory and modelling study

TL;DR: In this article, an electrodynamic balance was used to measure the water uptake on pollen and an environmental scanning electron microscope is used to visualize the response of the pollen to subsaturated humidities.
Journal ArticleDOI

Evaluating aerosol direct radiative effects on global terrestrial ecosystem carbon dynamics from 2003 to 2010

TL;DR: In this article, an integrated terrestrial ecosystem model and an atmospheric radiative transfer module are developed and applied to evaluate aerosol direct radiative effects on carbon dynamics of global terrestrial ecosystems during 2003-2010.
Journal ArticleDOI

Spatio-temporal variations in aerosol optical and cloud parameters over Southern India retrieved from MODIS satellite data

TL;DR: In this article, the spatial and temporal variations in aerosol particles over Southern India were described and the impact of these variations on various optical properties of clouds, using Moderate Resolution Imaging Spectroradiometer (MODIS) data retrieved from the Terra satellite.
Journal ArticleDOI

Seasonal inhomogeneity in cloud precursors over Gangetic Himalayan region during GVAX campaign

TL;DR: In this article, simultaneous measurements of number concentration of condensation nuclei (NCCN) and NCCN activation were obtained at Nainital, in the Gangetic-Himalayan (GH) region, during the frameworks of Ganges Valley Aerosol Experiment (GVAX), June 2011 to March 2012.
References
More filters

疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A

宁北芳, +1 more
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Journal ArticleDOI

Aerosols, climate, and the hydrological cycle

TL;DR: Human activities are releasing tiny particles (aerosols) into the atmosphere that enhance scattering and absorption of solar radiation, which can lead to a weaker hydrological cycle, which connects directly to availability and quality of fresh water, a major environmental issue of the 21st century.
Journal ArticleDOI

Global indirect aerosol effects: a review

TL;DR: In this article, the effects of aerosols on the climate system are discussed and different approaches how the climatic implications of these effects can be estimated globally as well as improvements that are needed in global climate models in order to better represent indirect aerosol effects are discussed.
Journal ArticleDOI

Climate Effects of Black Carbon Aerosols in China and India

TL;DR: A global climate model used to investigate possible aerosol contributions to trends in China and India found precipitation and temperature changes in the model that were comparable to those observed if the aerosols included a large proportion of absorbing black carbon (“soot”), similar to observed amounts.
Related Papers (5)