scispace - formally typeset
Journal ArticleDOI

One-dimensional electrical contact to a two-dimensional material.

Reads0
Chats0
TLDR
In graphene heterostructures, the edge-contact geometry provides new design possibilities for multilayered structures of complimentary 2D materials, and enables high electronic performance, including low-temperature ballistic transport over distances longer than 15 micrometers, and room-tem temperature mobility comparable to the theoretical phonon-scattering limit.
Abstract
Heterostructures based on layering of two-dimensional (2D) materials such as graphene and hexagonal boron nitride represent a new class of electronic devices. Realizing this potential, however, depends critically on the ability to make high-quality electrical contact. Here, we report a contact geometry in which we metalize only the 1D edge of a 2D graphene layer. In addition to outperforming conventional surface contacts, the edge-contact geometry allows a complete separation of the layer assembly and contact metallization processes. In graphene heterostructures, this enables high electronic performance, including low-temperature ballistic transport over distances longer than 15 micrometers, and room-temperature mobility comparable to the theoretical phonon-scattering limit. The edge-contact geometry provides new design possibilities for multilayered structures of complimentary 2D materials.

read more

Citations
More filters
Journal ArticleDOI

Unconventional superconductivity in magic-angle graphene superlattices

TL;DR: The realization of intrinsic unconventional superconductivity is reported—which cannot be explained by weak electron–phonon interactions—in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle.
Journal ArticleDOI

2D materials and van der Waals heterostructures

TL;DR: Two-dimensional heterostructures with extended range of functionalities yields a range of possible applications, and spectrum reconstruction in graphene interacting with hBN allowed several groups to study the Hofstadter butterfly effect and topological currents in such a system.
Journal ArticleDOI

Recent Advances in Ultrathin Two-Dimensional Nanomaterials

TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Journal ArticleDOI

Correlated insulator behaviour at half-filling in magic-angle graphene superlattices

TL;DR: It is shown experimentally that when this angle is close to the ‘magic’ angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling, and these flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons.
Journal ArticleDOI

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

Andrea C. Ferrari, +68 more
- 04 Mar 2015 - 
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
References
More filters
Journal ArticleDOI

The origins and limits of metal–graphene junction resistance

TL;DR: It is reported that the contact resistance in a palladium-graphene junction exhibits an anomalous temperature dependence, dropping significantly as temperature decreases to a value of just 110 ± 20 Ω µm at 6 K, which is two to three times the minimum achievable resistance.
Journal ArticleDOI

Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene

TL;DR: In this article, the phonon scattering limited electron mobility in extrinsic (i.e., gated or doped with a tunable and finite carrier density) two-dimensional graphene layers as a function of temperature and carrier density.
Journal ArticleDOI

Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected Microscopy

TL;DR: Using a fifth-order aberration-corrected scanning transmission electron microscope, which provides a factor of 100 increase in signal over an uncorrected instrument, two-dimensional elemental and valence-sensitive imaging at atomic resolution is demonstrated by means of electron energy-loss spectroscopy.
Journal ArticleDOI

Direct Growth of Graphene/Hexagonal Boron Nitride Stacked Layers

TL;DR: The direct CVD growth of h-BN on highly oriented pyrolytic graphite and on mechanically exfoliated graphene is demonstrated, as well as the large area growth of G/h-BN stacks, consisting of few layers of graphene and h-bn, via a two-step CVD process.
Related Papers (5)