scispace - formally typeset
Journal ArticleDOI

Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors

Reads0
Chats0
TLDR
Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1)-Mn (x)Te and is used to predict materials with T (C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.
Abstract
Ferromagnetism in manganese compound semiconductors not only opens prospects for tailoring magnetic and spin-related phenomena in semiconductors with a precision specific to III-V compounds but also addresses a question about the origin of the magnetic interactions that lead to a Curie temperature (T(C)) as high as 110 K for a manganese concentration of just 5%. Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1-)(x)Mn(x)Te and is used to predict materials with T(C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.

read more

Citations
More filters
Journal ArticleDOI

Spin dynamics in semiconductors

TL;DR: In this paper, the current status of spin dynamics in semiconductors is reviewed and a fully microscopic many-body investigation on spin dynamics based on the kinetic spin Bloch equation approach is comprehensively reviewed.
Journal ArticleDOI

Recent progress in voltage control of magnetism: Materials, mechanisms, and performance

TL;DR: In this paper, the authors provide a comprehensive review of recent progress in voltage control of magnetism in different thin films and discuss the challenges and future prospects of VCM, which will inspire more in-depth research and advance the practical applications of this field.
Journal ArticleDOI

65 years of ZnO research – old and very recent results

TL;DR: In this paper, a didactical review of optical properties of ZnO has been presented, focusing mainly on optical properties but presenting shortly also a few aspects of other fields like transport or magnetic properties.
Journal ArticleDOI

Dirac-fermion-mediated ferromagnetism in a topological insulator

TL;DR: In this paper, it was shown that decreasing the concentration of Dirac fermions in a Mn-doped topological insulator with an electric field increases the strength of its magnetic properties.
Journal ArticleDOI

Prospects for high temperature ferromagnetism in (Ga,Mn)As semiconductors

TL;DR: In this paper, the authors report on a comprehensive combined experimental and theoretical study of Curie temperature trends in (Ga,Mn)As ferromagnetic semiconductors, and they conclude that the number of uncompensated local moments in high-quality metallic samples increases linearly with number of acceptors with no sign of saturation.
References
More filters
Journal ArticleDOI

Making Nonmagnetic Semiconductors Ferromagnetic

TL;DR: The magnetic coupling in all semiconductor ferromagnetic/nonmagnetic layered structures, together with the possibility of spin filtering in RTDs, shows the potential of the present material system for exploring new physics and for developing new functionality toward future electronics.
Journal ArticleDOI

Diluted magnetic semiconductors

TL;DR: In this paper, the physical properties of diluted magnetic semiconductors (DMS) of the type AII1−xMnxBVI (e.g., Cd1−mnxSe, Hg 1−mnsTe) were reviewed.
Journal ArticleDOI

(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs

TL;DR: In this article, a new GaAs-based diluted magnetic semiconductor, (Ga,Mn)As, was prepared by molecular beam epitaxy and the lattice constant was determined by x-ray diffraction and shown to increase with the increase of Mn composition, x.
Journal ArticleDOI

Interaction Between the d Shells in the Transition Metals

TL;DR: In this paper, it is shown that the spin coupling between the incomplete $d$ shells and the conduction electrons leads to a tendency for a ferromagnetic alignment of $d $ spins.
Related Papers (5)