scispace - formally typeset
Search or ask a question
Institution

Agriculture and Agri-Food Canada

FacilityOttawa, Ontario, Canada
About: Agriculture and Agri-Food Canada is a facility organization based out in Ottawa, Ontario, Canada. It is known for research contribution in the topics: Population & Soil water. The organization has 10921 authors who have published 21332 publications receiving 748193 citations. The organization is also known as: Department of Agriculture and Agri-Food.
Topics: Population, Soil water, Gene, Manure, Tillage


Papers
More filters
Journal ArticleDOI
TL;DR: Grape seed extract is known as a powerful antioxidant that protects the body from premature aging, disease, and decay and is beneficial in many areas of health because of its antioxidant effect to bond with collagen, promoting youthful skin, cell health, elasticity, and flexibility.
Abstract: Grape seeds are waste products of the winery and grape juice industry. These seeds contain lipid, protein, carbohydrates, and 5-8% polyphenols depending on the variety. Polyphenols in grape seeds are mainly flavonoids, including gallic acid, the monomeric flavan-3-ols catechin, epicatechin, gallocatechin, epigallocatechin, and epicatechin 3-O-gallate, and procyanidin dimers, trimers, and more highly polymerized procyanidins. Grape seed extract is known as a powerful antioxidant that protects the body from premature aging, disease, and decay. Grape seeds contains mainly phenols such as proanthocyanidins (oligomeric proanthocyanidins). Scientific studies have shown that the antioxidant power of proanthocyanidins is 20 times greater than vitamin E and 50 times greater than vitamin C. Extensive research suggests that grape seed extract is beneficial in many areas of health because of its antioxidant effect to bond with collagen, promoting youthful skin, cell health, elasticity, and flexibility. Other studies have shown that proanthocyanidins help to protect the body from sun damage, to improve vision, to improve flexibility in joints, arteries, and body tissues such as the heart, and to improve blood circulation by strengthening capillaries, arteries, and veins. The most abundant phenolic compounds isolated from grape seed are catechins, epicatechin, procyanidin, and some dimers and trimers.

717 citations

Journal ArticleDOI
TL;DR: For different esters from the same vegetable oil, methyl esters were the most volatile, and the volatility decreased as the alkyl group grew bulkier, however, the bio-diesels were considerably less volatile than the conventional diesel fuels.

716 citations

Journal ArticleDOI
TL;DR: In this article, the authors used 15N NMR to detect 15N-enriched soil and humic materials and found that proteinaceous materials (proteins, peptides, and amino acids) are major soil N components.
Abstract: 1. From the data presented herein it is possible to deduce the following distribution of total N in humic substances and soils: proteinaceous materials (proteins, peptides, and amino acids) – ca. 40%; amino sugars – 5–6%; heterocyclic N compounds (including purines and pyrimidines) – ca. 35%; NH3–19%; approximately 1/4 of the NH3 is fixed NH4 +. Thus, proteinaceous materials and heterocyclics appear to be major soil N components. 2. Natural 15N abundance levels in soils and humic materials are so low that direct analysis by 15N NMR is very difficult or impossible. To overcome this difficulty, the soil or humic material is incubated with 15N-enriched fertilizer. Even incubation in the laboratory for up to 630 days does not produce the same types of 15N compounds that are formed in soils and humic materials over hundreds or thousands of years. For example, very few 15N-labelled heterocyclics are detected by 15N NMR. Does this mean that heterocyclics are not present? Or are the heterocyclics that are present not labelled under these experimental conditions and therefore not detected by the 15N NMR spectrometer ? Another possibility is that a large number of N heterocyclics occur in soils, but each type occurs in very low concentrations. Until the sensitivity is improved, 15N NMR will not provide results that can be compared with data obtained from the same soil and humic material samples by chemical methods and mass spectroscopy. 3. What is most important with respect to agricultural is that all major N forms in soils are available to organisms and are sources of NH3 or NH4 + for plant roots and microbes. Naturally, some of the NH3 will enter the N cycle. 4. From chemical and pyrolysis-mass spectrometric analyses it appears that N heterocylics are significant components of the SOM, rather than degradation products of other molecules due to pyrolysis. The arguments in favor of N heterocyclics as genuine SOM components are the following: a) Some N-heterocyclics originate from biological precursors of SOM, such as proteinaceous materials, carbohydrates, chlorophyll, nucleic acids, and alkaloids, which enter the soil system as plant residues or remains of animals. b) In aquatic humic substances and dissolved organic matter (DOM) at considerably lower pyrolysis temperatures (200 to 300°C), free and substituted N-heterocyclics such as pyrroles, pyrrolidines, pyridines, pyranes, and pyrazoles, have been identified by analytical pyrolysis (Schulten et al 1997b). c) Their presence in humic substances and soils was also detected without pyrolysis by gel chromatography – GC/MS after reductive acetylation (Schnitzer and Spiteller 1986), by X-ray photoelectron spectroscopy (Patience et al. 1992), and also by spectroscopic, chromatographic, chemical, and isotopic methods (Ikan et al. 1992). 5. While we can see light at the end of the tunnel as far as soil-N is concerned, further research is needed to identify additional N-containing compounds such as N- heterocyclics, to determine whether these are present in the soil or humic materials in the form in which they were identified or whether they originate from more complex structures. If the latter is correct, then we need to isolate these complex N-molecules and attempt to identify them.

711 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a comprehensive evaluation of empirical studies comparing organic products and conventionally grown alternatives, focusing on key organic consumer demand and marketing issues, including: (1) the implications of an economic definition of organically grown food for consumer demand; (2) attributes that shoppers consider most when comparing organic with conventionally generated products; (3) level and characteristics of consumer knowledge and awareness about organic food; (4) assessment methods and preferences of organic consumer attitudes and preferences; (5) size of price premium and consumers' willingness-to-pay for organic
Abstract: Growing interest in organic agriculture has prompted numerous studies that compare various aspects of organic and conventionally produced foods. This paper provides a comprehensive evaluation of empirical studies comparing organic products and conventionally grown alternatives. The emphasis is on key organic consumer demand and marketing issues, including: (1) the implications of an economic definition of organically grown food for consumer demand; (2) attributes that shoppers consider most when comparing organic with conventionally grown products; (3) level and characteristics of consumer knowledge and awareness about organic food; (4) assessment methods and characteristics of organic consumer attitudes and preferences; (5) size of price premium and characteristics of consumers’ willingness-to-pay for organic products; and (6) profile of organic consumers. Overall, although there is some knowledge and awareness about organic products, consumers are not consistent in their interpretation of what is organic. Secondly, while consumers typically understand the broad issues about organic foods, many tend not to understand the complexities and niceties of organic farming practices and organic food quality attributes. Uncertainty regarding the true attributes of organic, and skepticism about organic labels, part of which stems from reported cases of (inadvertent) mislabeling, and product misrepresentation, and partly because of nonuniform organic standards and certification procedures, may hold some consumers back from purchasing organic. Thirdly, concern for human health and safety, which is a key factor that influences consumer preference for organic food, is consistent with observed deterioration in human health over time and, therefore, motivates consumers to buy organic food as insurance and/or investment in health. Fourthly, the proportion of consumers who are willing to pay a price premium for organic food decreases with premium level. On the other hand, premiums tend to increase with (combinations of) preferred attributes. In addition, demand tends to depend more on the price differential with respect to conventionally grown products, than on actual price. In contrast to sensitivity of demand to changes in price, income elasticity of demand for organic foods is generally small. Finally, it is important for policy analysts and researchers to note that organic fresh fruits and vegetables currently dominate the organic consumer's food basket. Furthermore, it is not clear whether frequent buyers consider particular organic products (e.g., organic meat) as normal goods, or if consumers consider such products as luxury goods.

702 citations

Journal ArticleDOI
Olle Terenius1, Alexie Papanicolaou2, Alexie Papanicolaou3, Jennie S. Garbutt4, Ioannis Eleftherianos5, Hanneke Huvenne6, Sriramana Kanginakudru7, Merete Albrechtsen8, Chunju An9, Jean Luc Aymeric10, Andrea Barthel11, Piotr Bebas12, Kavita Bitra13, Alejandra Bravo14, François Chevalier10, Derek Collinge15, Derek Collinge3, Cristina M. Crava16, Ruud A. de Maagd17, Bernard Duvic10, Martin A. Erlandson18, Martin A. Erlandson19, Ingrid Faye20, G Felfoldi21, Haruhiko Fujiwara22, Ryo Futahashi23, Ryo Futahashi22, Archana S. Gandhe7, H.S. Gatehouse24, L. N. Gatehouse24, Jadwiga M. Giebultowicz25, Isabel Gómez14, Cornelis J. P. Grimmelikhuijzen8, Astrid T. Groot11, Frank Hauser8, David G. Heckel11, Dwayne D. Hegedus19, Dwayne D. Hegedus18, Steven Hrycaj2, Lihua Huang3, J. Joe Hull26, Kostas Iatrou6, Masatoshi Iga6, Michael R. Kanost9, Joanna Kotwica12, Changyou Li3, Jianghong Li3, Jisheng Liu6, Magnus Lundmark8, Shogo Matsumoto4, Martina Meyering-Vos7, Peter J. Millichap4, Antónia Monteiro8, Nirotpal Mrinal7, Teruyuki Niimi9, Daniela Nowara8, Atsushi Ohnishi4, Vicencio Oostra27, Katsuhisa Ozaki, Maria P. Papakonstantinou6, Aleksandar Popadic2, Manchikatla Venkat Rajam12, Suzanne V. Saenko27, Robert M. Simpson24, Mario Soberón14, Michael R. Strand13, Shuichiro Tomita13, Umut Toprak18, Ping Wang3, Choon Wei Wee15, Steven Whyard28, Wenqing Zhang17, Javaregowda Nagaraju7, Richard H. ffrench-Constant2, Salvador Herrero16, Salvador Herrero17, Karl H.J. Gordon3, Luc Swevers6, Guy Smagghe6 
TL;DR: Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involved in immunity and that gene expression in epidermal tissues seems to be most difficult to silence.

698 citations


Authors

Showing all 10964 results

NameH-indexPapersCitations
Fereidoon Shahidi11995157796
Miao Liu11199359811
Xiang Li97147242301
Eviatar Nevo9584840066
Tim A. McAllister8586232409
Hubert Kolb8442025451
Daniel M. Weary8343722349
Karen A. Beauchemin8342322351
Nanthi Bolan8355031030
Oene Oenema8036123810
Santosh Kumar80119629391
Yueming Jiang7945220563
Denis A. Angers7625619321
Tong Zhu7247218205
Christophe Lacroix6935315860
Network Information
Related Institutions (5)
Agricultural Research Service
58.6K papers, 2.1M citations

95% related

United States Department of Agriculture
90.8K papers, 3.4M citations

92% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

90% related

University of Hohenheim
16.4K papers, 567.3K citations

90% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
202282
20211,078
20201,035
2019992
2018988