scispace - formally typeset
Search or ask a question
Institution

Agriculture and Agri-Food Canada

FacilityOttawa, Ontario, Canada
About: Agriculture and Agri-Food Canada is a facility organization based out in Ottawa, Ontario, Canada. It is known for research contribution in the topics: Population & Soil water. The organization has 10921 authors who have published 21332 publications receiving 748193 citations. The organization is also known as: Department of Agriculture and Agri-Food.
Topics: Population, Soil water, Gene, Manure, Tillage


Papers
More filters
Journal ArticleDOI
Rudi Appels1, Rudi Appels2, Kellye Eversole, Nils Stein3  +204 moreInstitutions (45)
17 Aug 2018-Science
TL;DR: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.
Abstract: An annotated reference sequence representing the hexaploid bread wheat genome in 21 pseudomolecules has been analyzed to identify the distribution and genomic context of coding and noncoding elements across the A, B, and D subgenomes. With an estimated coverage of 94% of the genome and containing 107,891 high-confidence gene models, this assembly enabled the discovery of tissue- and developmental stage-related coexpression networks by providing a transcriptome atlas representing major stages of wheat development. Dynamics of complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. This community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.

2,118 citations

Journal ArticleDOI
TL;DR: In this paper, a method for minimizing the effect of leaf chlorophyll content on the prediction of green LAI was presented, and new algorithms that adequately predict the LAI of crop canopies.

1,915 citations

Journal ArticleDOI
29 Mar 2013-Science
TL;DR: Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation.
Abstract: The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.

1,881 citations

Journal ArticleDOI
Xiaowu Wang1, Hanzhong Wang, Jun Wang2, Jun Wang3, Jun Wang4, Rifei Sun, Jian Wu, Shengyi Liu, Yinqi Bai3, Jeong-Hwan Mun5, Ian Bancroft6, Feng Cheng, Sanwen Huang, Xixiang Li, Wei Hua, Junyi Wang3, Xiyin Wang7, Xiyin Wang8, Michael Freeling9, J. Chris Pires10, Andrew H. Paterson7, Boulos Chalhoub, Bo Wang3, Alice Hayward11, Alice Hayward12, Andrew G. Sharpe13, Beom-Seok Park5, Bernd Weisshaar14, Binghang Liu3, Bo Li3, Bo Liu, Chaobo Tong, Chi Song3, Chris Duran15, Chris Duran12, Chunfang Peng3, Geng Chunyu3, Chushin Koh13, Chuyu Lin3, David Edwards15, David Edwards12, Desheng Mu3, Di Shen, Eleni Soumpourou6, Fei Li, Fiona Fraser6, Gavin C. Conant10, Gilles Lassalle16, Graham J.W. King4, Guusje Bonnema17, Haibao Tang9, Haiping Wang, Harry Belcram, Heling Zhou3, Hideki Hirakawa, Hiroshi Abe, Hui Guo7, Hui Wang, Huizhe Jin7, Isobel A. P. Parkin18, Jacqueline Batley12, Jacqueline Batley11, Jeong-Sun Kim5, Jérémy Just, Jianwen Li3, Jiaohui Xu3, Jie Deng, Jin A Kim5, Jingping Li7, Jingyin Yu, Jinling Meng19, Jinpeng Wang8, Jiumeng Min3, Julie Poulain20, Katsunori Hatakeyama, Kui Wu3, Li Wang8, Lu Fang, Martin Trick6, Matthew G. Links18, Meixia Zhao, Mina Jin5, Nirala Ramchiary21, Nizar Drou22, Paul J. Berkman12, Paul J. Berkman15, Qingle Cai3, Quanfei Huang3, Ruiqiang Li3, Satoshi Tabata, Shifeng Cheng3, Shu Zhang3, Shujiang Zhang, Shunmou Huang, Shusei Sato, Silong Sun, Soo-Jin Kwon5, Su-Ryun Choi21, Tae-Ho Lee7, Wei Fan3, Xiang Zhao3, Xu Tan7, Xun Xu3, Yan Wang, Yang Qiu, Ye Yin3, Yingrui Li3, Yongchen Du, Yongcui Liao, Yong Pyo Lim21, Yoshihiro Narusaka, Yupeng Wang8, Zhenyi Wang8, Zhenyu Li3, Zhiwen Wang3, Zhiyong Xiong10, Zhonghua Zhang 
TL;DR: The annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage, and used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution.
Abstract: We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one of the three copies consistently retaining a disproportionately large fraction of the genes expected to have been present in its ancestor. Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement of Brassica oil and vegetable crops.

1,811 citations

Journal ArticleDOI
TL;DR: This consensus map represents the highest-density public microsatellite map of wheat and is accompanied by an allele database showing the parent allele sizes for every marker mapped, which enables users to predict allele sizes in new breeding populations and develop molecular breeding and genomics strategies.
Abstract: A microsatellite consensus map was constructed by joining four independent genetic maps of bread wheat. Three of the maps were F1-derived, doubled-haploid line populations and the fourth population was ‘Synthetic’ × ‘Opata’, an F6-derived, recombinant-inbred line population. Microsatellite markers from different research groups including the Wheat Microsatellite Consortium, GWM, GDM, CFA, CFD, and BARC were used in the mapping. A sufficient number of common loci between genetic maps, ranging from 52 to 232 loci, were mapped on different populations to facilitate joining the maps. Four genetic maps were developed using MapMaker V3.0 and JoinMap V3.0. The software CMap, a comparative map viewer, was used to align the four maps and identify potential errors based on consensus. JoinMap V3.0 was used to calculate marker order and recombination distances based on the consensus of the four maps. A total of 1,235 microsatellite loci were mapped, covering 2,569 cM, giving an average interval distance of 2.2 cM. This consensus map represents the highest-density public microsatellite map of wheat and is accompanied by an allele database showing the parent allele sizes for every marker mapped. This enables users to predict allele sizes in new breeding populations and develop molecular breeding and genomics strategies.

1,761 citations


Authors

Showing all 10964 results

NameH-indexPapersCitations
Fereidoon Shahidi11995157796
Miao Liu11199359811
Xiang Li97147242301
Eviatar Nevo9584840066
Tim A. McAllister8586232409
Hubert Kolb8442025451
Daniel M. Weary8343722349
Karen A. Beauchemin8342322351
Nanthi Bolan8355031030
Oene Oenema8036123810
Santosh Kumar80119629391
Yueming Jiang7945220563
Denis A. Angers7625619321
Tong Zhu7247218205
Christophe Lacroix6935315860
Network Information
Related Institutions (5)
Agricultural Research Service
58.6K papers, 2.1M citations

95% related

United States Department of Agriculture
90.8K papers, 3.4M citations

92% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

90% related

University of Hohenheim
16.4K papers, 567.3K citations

90% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
202282
20211,078
20201,035
2019992
2018988