scispace - formally typeset
Search or ask a question

Showing papers on "Antigen published in 2013"


Journal ArticleDOI
TL;DR: The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL.
Abstract: Chimeric antigen receptor-modified T cells with specificity for CD19 have shown promise in the treatment of chronic lymphocytic leukemia (CLL). It remains to be established whether chimeric antigen receptor T cells have clinical activity in acute lymphoblastic leukemia (ALL). Two children with relapsed and refractory pre-B-cell ALL received infusions of T cells transduced with anti-CD19 antibody and a T-cell signaling molecule (CTL019 chimeric antigen receptor T cells), at a dose of 1.4×10(6) to 1.2×10(7) CTL019 cells per kilogram of body weight. In both patients, CTL019 T cells expanded to a level that was more than 1000 times as high as the initial engraftment level, and the cells were identified in bone marrow. In addition, the chimeric antigen receptor T cells were observed in the cerebrospinal fluid (CSF), where they persisted at high levels for at least 6 months. Eight grade 3 or 4 adverse events were noted. The cytokine-release syndrome and B-cell aplasia developed in both patients. In one child, the cytokine-release syndrome was severe; cytokine blockade with etanercept and tocilizumab was effective in reversing the syndrome and did not prevent expansion of chimeric antigen receptor T cells or reduce antileukemic efficacy. Complete remission was observed in both patients and is ongoing in one patient at 11 months after treatment. The other patient had a relapse, with blast cells that no longer expressed CD19, approximately 2 months after treatment. Chimeric antigen receptor-modified T cells are capable of killing even aggressive, treatment-refractory acute leukemia cells in vivo. The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL.

3,027 citations


Journal ArticleDOI
TL;DR: Two broad categories of tumor escape based on cellular and molecular characteristics of the tumor microenvironment are suggested, which appear to resist immune attack through immune system exclusion or ignorance and may require distinct immunotherapeutic interventions for maximal therapeutic effect.
Abstract: Most tumor cells express antigens that can mediate recognition by host CD8(+) T cells. Cancers that are detected clinically must have evaded antitumor immune responses to grow progressively. Recent work has suggested two broad categories of tumor escape based on cellular and molecular characteristics of the tumor microenvironment. One major subset shows a T cell-inflamed phenotype consisting of infiltrating T cells, a broad chemokine profile and a type I interferon signature indicative of innate immune activation. These tumors appear to resist immune attack through the dominant inhibitory effects of immune system-suppressive pathways. The other major phenotype lacks this T cell-inflamed phenotype and appears to resist immune attack through immune system exclusion or ignorance. These two major phenotypes of tumor microenvironment may require distinct immunotherapeutic interventions for maximal therapeutic effect.

2,939 citations


Journal ArticleDOI
TL;DR: It is postulate that ICD constitutes a prominent pathway for the activation of the immune system against cancer, which in turn determines the long-term success of anticancer therapies and its subversion by pathogens.
Abstract: Depending on the initiating stimulus, cancer cell death can be immunogenic or nonimmunogenic. Immunogenic cell death (ICD) involves changes in the composition of the cell surface as well as the release of soluble mediators, occurring in a defined temporal sequence. Such signals operate on a series of receptors expressed by dendritic cells to stimulate the presentation of tumor antigens to T cells. We postulate that ICD constitutes a prominent pathway for the activation of the immune system against cancer, which in turn determines the long-term success of anticancer therapies. Hence, suboptimal regimens (failing to induce ICD), selective alterations in cancer cells (preventing the emission of immunogenic signals during ICD), or defects in immune effectors (abolishing the perception of ICD by the immune system) can all contribute to therapeutic failure. We surmise that ICD and its subversion by pathogens also play major roles in antiviral immune responses.

2,323 citations


Journal ArticleDOI
TL;DR: Anti–CTLA-4 antibody induces selective depletion of T reg cells within tumor lesions in a manner that is dependent on the presence of Fc gamma receptor-expressing macrophages within the tumor microenvironment.
Abstract: Treatment with monoclonal antibody specific for cytotoxic T lymphocyte–associated antigen 4 (CTLA-4), an inhibitory receptor expressed by T lymphocytes, has emerged as an effective therapy for the treatment of metastatic melanoma. Although subject to debate, current models favor a mechanism of activity involving blockade of the inhibitory activity of CTLA-4 on both effector (T eff) and regulatory (T reg) T cells, resulting in enhanced antitumor effector T cell activity capable of inducing tumor regression. We demonstrate, however, that the activity of anti–CTLA-4 antibody on the T reg cell compartment is mediated via selective depletion of T reg cells within tumor lesions. Importantly, T reg cell depletion is dependent on the presence of Fcγ receptor–expressing macrophages within the tumor microenvironment, indicating that T reg cells are depleted in trans in a context-dependent manner. Our results reveal further mechanistic insight into the activity of anti-CTLA-4–based cancer immunotherapy, and illustrate the importance of specific features of the local tumor environment on the final outcome of antibody-based immunomodulatory therapies.

1,225 citations


Journal ArticleDOI
TL;DR: This review highlights the aspects of MHC-I and M HC-II biosynthesis and assembly that have evolved to intersect these pathways and sample the peptides that are produced.
Abstract: T cell recognition of antigen-presenting cells depends on their expression of a spectrum of peptides bound to major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules. Conversion of antigens from pathogens or transformed cells into MHC-I- and MHC-II-bound peptides is critical for mounting protective T cell responses, and similar processing of self proteins is necessary to establish and maintain tolerance. Cells use a variety of mechanisms to acquire protein antigens, from translation in the cytosol to variations on the theme of endocytosis, and to degrade them once acquired. In this review, we highlight the aspects of MHC-I and MHC-II biosynthesis and assembly that have evolved to intersect these pathways and sample the peptides that are produced.

1,136 citations


Journal ArticleDOI
11 Oct 2013-Science
TL;DR: It is becoming increasingly clear that T cell function is intimately linked to metabolic programs, and as such there is a considerable and growing interest in developing techniques that target metabolism for immunotherapy.
Abstract: Background Naive lymphocytes circulate in the body in a resting state, but upon recognition of foreign antigen and receipt of proper costimulatory signals, these cells become activated, undergo a rapid burst in proliferation, and assume effector functions aimed at controlling or killing the invader. There is a growing appreciation that changes in peripheral T cell function are not only supported by but are dependent on metabolic reprogramming and that specific effector functions cannot proceed without adopting the correct metabolism. However, the reasons underlying why T cells adopt specific metabolic programs and the impact that these programs have on T cell function and, ultimately, immunological outcome remain unclear. T cell function and fate are dependent on metabolic reprogramming. As T cells differentiate during an immune response, they move from what are presumably nutrient-replete lymphoid organs to sites of cancer or infection, where oxygen, nutrients, growth factors, and other signals may become limiting. These metabolically restrictive environments force T cells to metabolically adapt in order to survive and perform their necessary functions. Advances Research into the metabolism of tumor cells has provided valuable insight into the metabolic pathways important for cell proliferation and survival, as well as the influence of metabolites themselves on signal transduction and epigenetic programming. Many of these concepts have shaped how we view metabolism in T cells. However, it is important to note that, unlike tumors, T cells rapidly transition between resting catabolic states (naive and memory T cells) to one of growth and proliferation (effector T cells) as part of a normal developmental program. In addition, as T cells differentiate during an immune response they also move from what are presumably nutrient-replete lymphoid organs to sites of cancer or infection, where oxygen, nutrients, and growth factors may become limiting. Thus, T cells must metabolically adapt to these changing conditions in order to perform their necessary functions. In this review, we highlight emerging areas in the metabolism of these dynamic cells and discuss the potential impact of metabolic control on T cell fate, plasticity, and effector function. Outlook It is becoming increasingly clear that T cell function is intimately linked to metabolic programs, and as such there is a considerable and growing interest in developing techniques that target metabolism for immunotherapy. Studying metabolism has often been difficult for the nonexpert, because many of the experimental approaches require specialized instrumentation that has not been widely available. Furthermore, acquiring sufficient cellular material for ex vivo analyses, coupled with the inherent difficulty of assessing cellular metabolism in vivo during an immune response, presents substantial challenges to scientists studying the metabolism of immune cells. Nevertheless, understanding how environmental cues and cellular metabolism influence the outcome of T cell–mediated immune responses will be critical for learning how to exploit metabolism to alter disease outcome. Overall, we are just beginning to understand the pathways that regulate metabolism in lymphocytes and how T cells adapt to changes in their microenvironment, particularly in vivo; this area of immunology is poised for substantial advances in the years to come.

1,022 citations


Journal ArticleDOI
TL;DR: It is found that CD103+CD8+ TRM cells developed in the skin from epithelium-infiltrating precursor cells that lacked expression of the effector-cell marker KLRG1.
Abstract: Tissue-resident memory T cells (T(RM) cells) provide superior protection against infection in extralymphoid tissues. Here we found that CD103(+)CD8(+) T(RM) cells developed in the skin from epithelium-infiltrating precursor cells that lacked expression of the effector-cell marker KLRG1. A combination of entry into the epithelium plus local signaling by interleukin 15 (IL-15) and transforming growth factor-β (TGF-β) was required for the formation of these long-lived memory cells. Notably, differentiation into T(RM) cells resulted in the progressive acquisition of a unique transcriptional profile that differed from that of circulating memory cells and other types of T cells that permanently reside in skin epithelium. We provide a comprehensive molecular framework for the local differentiation of a distinct peripheral population of memory cells that forms a first-line immunological defense system in barrier tissues.

996 citations


Journal ArticleDOI
TL;DR: It is concluded that whereas B cells and αβ T cells are commonly thought to contribute primarily to the antigen-specific effector and memory phases of immunity, γδ T cells is distinct in that they combine conventional adaptive features with rapid, innate-like responses that can place them in the initiation phase of immune reactions.
Abstract: γδ T cells are a unique and conserved population of lymphocytes that have been the subject of a recent explosion of interest owing to their essential contributions to many types of immune response and immunopathology But what does the integration of recent and long-established studies really tell us about these cells and their place in immunology? The time is ripe to consider the evidence for their unique and crucial functions We conclude that whereas B cells and αβ T cells are commonly thought to contribute primarily to the antigen-specific effector and memory phases of immunity, γδ T cells are distinct in that they combine conventional adaptive features (inherent in their T cell receptors and pleiotropic effector functions) with rapid, innate-like responses that can place them in the initiation phase of immune reactions This underpins a revised perspective on lymphocyte biology and the regulation of immunogenicity

987 citations


Journal ArticleDOI
TL;DR: A new screening approach involving mining whole-exome sequence data to identify mutated proteins expressed in patient tumors and identified mutated antigens expressed on autologous tumor cells that were recognized by three bulk TIL lines from three individuals with melanoma that were associated with objective tumor regressions following adoptive transfer.
Abstract: Substantial regressions of metastatic lesions have been observed in up to 70% of patients with melanoma who received adoptively transferred autologous tumor-infiltrating lymphocytes (TILs) in phase 2 clinical trials. In addition, 40% of patients treated in a recent trial experienced complete regressions of all measurable lesions for at least 5 years following TIL treatment. To evaluate the potential association between the ability of TILs to mediate durable regressions and their ability to recognize potent antigens that presumably include mutated gene products, we developed a new screening approach involving mining whole-exome sequence data to identify mutated proteins expressed in patient tumors. We then synthesized and evaluated candidate mutated T cell epitopes that were identified using a major histocompatibility complex-binding algorithm for recognition by TILs. Using this approach, we identified mutated antigens expressed on autologous tumor cells that were recognized by three bulk TIL lines from three individuals with melanoma that were associated with objective tumor regressions following adoptive transfer. This simplified approach for identifying mutated antigens recognized by T cells avoids the need to generate and laboriously screen cDNA libraries from tumors and may represent a generally applicable method for identifying mutated antigens expressed in a variety of tumor types.

975 citations


Journal ArticleDOI
08 Aug 2013-Blood
TL;DR: Clinical testing of engineered T cells expressing an affinity-enhanced TCR against HLA-A*01-restricted MAGE-A3 demonstrated that TCR-engineered T cells can have serious and not readily predictable off-target and organ-specific toxicities and highlight the need for improved methods to define the specificity of engineeredTCRs.

952 citations


Journal ArticleDOI
24 Jan 2013-Immunity
TL;DR: This review focuses on the molecular mechanisms and complex cellular actions of IL-2, its cooperative and opposing effects with other cytokines, and how both promoting and blocking the actions ofIL-2 are being utilized in clinical medicine.

Journal ArticleDOI
TL;DR: Co-transduced T cells destroy tumors that express both antigens but do not affect tumors expressing either antigen alone, and this 'tumor-sensing' strategy may help broaden the applicability and avoid some of the side effects of targeted T-cell therapies.
Abstract: To increase the tumor specificity of engineered T cells, Kloss et al. design an approach that relies on T cell recognition of two, rather than one, antigens.

Journal ArticleDOI
TL;DR: The identification of CD4⁺ Tfh cells in breast cancer suggests that they are an important immune element whose presence in the tumor is a prognostic factor.
Abstract: CD4+ T cells are critical regulators of immune responses, but their functional role in human breast cancer is relatively unknown. The goal of this study was to produce an image of CD4+ T cells infiltrating breast tumors using limited ex vivo manipulation to better understand the in vivo differences associated with patient prognosis. We performed comprehensive molecular profiling of infiltrating CD4+ T cells isolated from untreated invasive primary tumors and found that the infiltrating T cell subpopulations included follicular helper T (Tfh) cells, which have not previously been found in solid tumors, as well as Th1, Th2, and Th17 effector memory cells and Tregs. T cell signaling pathway alterations included a mixture of activation and suppression characterized by restricted cytokine/chemokine production, which inversely paralleled lymphoid infiltration levels and could be reproduced in activated donor CD4+ T cells treated with primary tumor supernatant. A comparison of extensively versus minimally infiltrated tumors showed that CXCL13-producing CD4+ Tfh cells distinguish extensive immune infiltrates, principally located in tertiary lymphoid structure germinal centers. An 8-gene Tfh signature, signifying organized antitumor immunity, robustly predicted survival or preoperative response to chemotherapy. Our identification of CD4+ Tfh cells in breast cancer suggests that they are an important immune element whose presence in the tumor is a prognostic factor.

Journal ArticleDOI
TL;DR: It is indicated that augmenting glycolytic flux drives CD8+ T cells toward a terminally differentiated state, while its inhibition preserves the formation of long-lived memory CD8+, and the efficacy of T cell-based therapies against chronic infectious diseases and cancer.
Abstract: Naive CD8+ T cells rely upon oxidation of fatty acids as a primary source of energy. After antigen encounter, T cells shift to a glycolytic metabolism to sustain effector function. It is unclear, however, whether changes in glucose metabolism ultimately influence the ability of activated T cells to become long-lived memory cells. We used a fluorescent glucose analog, 2-NBDG, to quantify glucose uptake in activated CD8+ T cells. We found that cells exhibiting limited glucose incorporation had a molecular profile characteristic of memory precursor cells and an increased capacity to enter the memory pool compared with cells taking up high amounts of glucose. Accordingly, enforcing glycolytic metabolism by overexpressing the glycolytic enzyme phosphoglycerate mutase-1 severely impaired the ability of CD8+ T cells to form long-term memory. Conversely, activation of CD8+ T cells in the presence of an inhibitor of glycolysis, 2-deoxyglucose, enhanced the generation of memory cells and antitumor functionality. Our data indicate that augmenting glycolytic flux drives CD8+ T cells toward a terminally differentiated state, while its inhibition preserves the formation of long-lived memory CD8+ T cells. These results have important implications for improving the efficacy of T cell–based therapies against chronic infectious diseases and cancer.

Journal ArticleDOI
TL;DR: It is shown that the intracellular supply of large neutral amino acids in T cells was regulated by pathogens and the T cell antigen receptor (TCR), and that Slc7a5-null T cells were unable to metabolically reprogram in response to antigen and did not undergo clonal expansion or effector differentiation.
Abstract: T lymphocytes must regulate nutrient uptake to meet the metabolic demands of an immune response. Here we show that the intracellular supply of large neutral amino acids (LNAAs) in T cells was regulated by pathogens and the T cell antigen receptor (TCR). T cells responded to antigen by upregulating expression of many amino-acid transporters, but a single System L ('leucine-preferring system') transporter, Slc7a5, mediated uptake of LNAAs in activated T cells. Slc7a5-null T cells were unable to metabolically reprogram in response to antigen and did not undergo clonal expansion or effector differentiation. The metabolic catastrophe caused by loss of Slc7a5 reflected the requirement for sustained uptake of the LNAA leucine for activation of the serine-threonine kinase complex mTORC1 and for expression of the transcription factor c-Myc. Control of expression of the System L transporter by pathogens is thus a critical metabolic checkpoint for T cells.

Journal ArticleDOI
TL;DR: The coexpression of CD49b and LAG-3 enables the isolation of highly suppressive human Tr 1 cells from in vitro anergized cultures and allows the tracking of Tr1 cells in the peripheral blood of subjects who developed tolerance after allogeneic hematopoietic stem cell transplantation.
Abstract: CD4(+) type 1 T regulatory (Tr1) cells are induced in the periphery and have a pivotal role in promoting and maintaining tolerance. The absence of surface markers that uniquely identify Tr1 cells has limited their study and clinical applications. By gene expression profiling of human Tr1 cell clones, we identified the surface markers CD49b and lymphocyte activation gene 3 (LAG-3) as being stably and selectively coexpressed on mouse and human Tr1 cells. We showed the specificity of these markers in mouse models of intestinal inflammation and helminth infection and in the peripheral blood of healthy volunteers. The coexpression of CD49b and LAG-3 enables the isolation of highly suppressive human Tr1 cells from in vitro anergized cultures and allows the tracking of Tr1 cells in the peripheral blood of subjects who developed tolerance after allogeneic hematopoietic stem cell transplantation. The use of these markers makes it feasible to track Tr1 cells in vivo and purify Tr1 cells for cell therapy to induce or restore tolerance in subjects with immune-mediated diseases.

Journal ArticleDOI
10 May 2013-Science
TL;DR: This work employed computation-guided, in vitro screening to engineer a germline-targeting gp120 outer domain immunogen that binds to multiple VRC01-class bNAbs and germline precursors, and elucidated germline binding crystallographically.
Abstract: Vaccine development to induce broadly neutralizing antibodies (bNAbs) against HIV-1 is a global health priority. Potent VRC01-class bNAbs against the CD4 binding site of HIV gp120 have been isolated from HIV-1-infected individuals; however, such bNAbs have not been induced by vaccination. Wild-type gp120 proteins lack detectable affinity for predicted germline precursors of VRC01-class bNAbs, making them poor immunogens to prime a VRC01-class response. We employed computation-guided, in vitro screening to engineer a germline-targeting gp120 outer domain immunogen that binds to multiple VRC01-class bNAbs and germline precursors, and elucidated germline binding crystallographically. When multimerized on nanoparticles, this immunogen (eOD-GT6) activates germline and mature VRC01-class B cells. Thus, eOD-GT6 nanoparticles have promise as a vaccine prime. In principle, germline-targeting strategies could be applied to other epitopes and pathogens.

Journal ArticleDOI
19 Sep 2013-Immunity
TL;DR: It is shown that Ly-6C⁺ monocytes constitutively trafficked into skin, lung, and lymph nodes (LNs) and can enter steady-state nonlymphoid organs and recirculate to LNs without differentiation to macrophages or DCs, revising a long-held view that monocytes become tissue-resident macrophage by default.


Journal ArticleDOI
06 Jun 2013-Nature
TL;DR: It is identified that ILCs maintain intestinal homeostasis through MHCII-dependent interactions with CD4+ T cells that limit pathological adaptive immune cell responses to commensal bacteria.
Abstract: Innate lymphoid cells (ILCs) are a recently characterized family of immune cells that have critical roles in cytokine-mediated regulation of intestinal epithelial cell barrier integrity. Alterations in ILC responses are associated with multiple chronic human diseases, including inflammatory bowel disease, implicating a role for ILCs in disease pathogenesis. Owing to an inability to target ILCs selectively, experimental studies assessing ILC function have predominantly used mice lacking adaptive immune cells. However, in lymphocyte-sufficient hosts ILCs are vastly outnumbered by CD4(+) T cells, which express similar profiles of effector cytokines. Therefore, the function of ILCs in the presence of adaptive immunity and their potential to influence adaptive immune cell responses remain unknown. To test this, we used genetic or antibody-mediated depletion strategies to target murine ILCs in the presence of an adaptive immune system. We show that loss of retinoic-acid-receptor-related orphan receptor-γt-positive (RORγt(+)) ILCs was associated with dysregulated adaptive immune cell responses against commensal bacteria and low-grade systemic inflammation. Remarkably, ILC-mediated regulation of adaptive immune cells occurred independently of interleukin (IL)-17A, IL-22 or IL-23. Genome-wide transcriptional profiling and functional analyses revealed that RORγt(+) ILCs express major histocompatibility complex class II (MHCII) and can process and present antigen. However, rather than inducing T-cell proliferation, ILCs acted to limit commensal bacteria-specific CD4(+) T-cell responses. Consistent with this, selective deletion of MHCII in murine RORγt(+) ILCs resulted in dysregulated commensal bacteria-dependent CD4(+) T-cell responses that promoted spontaneous intestinal inflammation. These data identify that ILCs maintain intestinal homeostasis through MHCII-dependent interactions with CD4(+) T cells that limit pathological adaptive immune cell responses to commensal bacteria.

Journal ArticleDOI
TL;DR: Key characteristics of current, clinically active antibody-drug conjugate patients are summarized and recent clinical data illustrating the benefit of antibody-targeted delivery of cytotoxic agents to cancer cells are highlighted.
Abstract: An antibody-drug conjugate (ADC) provides the possibility of selectively ablating cancer cells by combining the specificity of a monoclonal antibody (mAb) for a target antigen with the delivery of a highly potent cytotoxic agent. ADC target antigens are typically highly expressed on the surface of cancer cells compared to normal cells. The tumor target, the cytotoxic agent, and the manner in which the agent is attached to the antibody are key determinants of clinical activity and tolerability. Recently, several clinical trials have demonstrated that ADCs achieve higher clinical response rates than unconjugated mAbs targeting the same cell surface antigen. Brentuximab vedotin represents one such ADC that has recently been approved for the treatment of relapsed Hodgkin and systemic anaplastic large cell lymphomas--both characterized by high expression of the target antigen, CD30, on the surface of malignant cells. This review summarizes key characteristics of current, clinically active ADCs and highlights recent clinical data illustrating the benefit of antibody-targeted delivery of cytotoxic agents to cancer cells.

Journal ArticleDOI
TL;DR: This study shows that specifically blocking PD-1 immunosuppression can potently enhance CAR T-cell therapy that has significant implications for potentially improving therapeutic outcomes of this approach in patients with cancer.
Abstract: Purpose: To determine the antitumor efficacy and toxicity of a novel combination approach involving adoptive T-cell immunotherapy using chimeric antigen receptor (CAR) T cells with an immunomodulatory reagent for blocking immunosuppression. Experimental Design: We examined whether administration of a PD-1 blocking antibody could increase the therapeutic activity of CAR T cells against two different Her-2+ tumors. The use of a self-antigen mouse model enabled investigation into the efficacy, mechanism, and toxicity of this combination approach. Results: In this study, we first showed a significant increase in the level of PD-1 expressed on transduced anti-Her-2 CD8+ T cells following antigen-specific stimulation with PD-L1+ tumor cells and that markers of activation and proliferation were increased in anti-Her-2 T cells in the presence of anti-PD-1 antibody. In adoptive transfer studies in Her-2 transgenic recipient mice, we showed a significant improvement in growth inhibition of two different Her-2+ tumors treated with anti-Her-2 T cells in combination with anti-PD-1 antibody. The therapeutic effects observed correlated with increased function of anti-Her-2 T cells following PD-1 blockade. Strikingly, a significant decrease in the percentage of Gr1+ CD11b+ myeloid-derived suppressor cells (MDSC) was observed in the tumor microenvironment of mice treated with the combination therapy. Importantly, increased antitumor effects were not associated with any autoimmune pathology in normal tissue expressing Her-2 antigen. Conclusion: This study shows that specifically blocking PD-1 immunosuppression can potently enhance CAR T-cell therapy that has significant implications for potentially improving therapeutic outcomes of this approach in patients with cancer. Clin Cancer Res; 19(20); 5636–46. ©2013 AACR . See related article by Morales-Kastresana, et al., [p. 5546][1] This article is featured in Highlights of This Issue, [p. 5543][2] [1]: /lookup/volpage/19/5546?iss=20 [2]: /lookup/volpage/19/5543?iss=20

Journal ArticleDOI
TL;DR: It is found that regulation of KLF2 and S1P1 provides a switch that dictates whether CD8+ T cells commit to recirculating or tissue-resident memory populations.
Abstract: Cell-mediated immunity critically depends on the localization of lymphocytes at sites of infection. While some memory T cells recirculate, a distinct lineage (resident memory T cells (T(RM) cells)) are embedded in nonlymphoid tissues (NLTs) and mediate potent protective immunity. However, the defining transcriptional basis for the establishment of T(RM) cells is unknown. We found that CD8(+) T(RM) cells lacked expression of the transcription factor KLF2 and its target gene S1pr1 (which encodes S1P1, a receptor for sphingosine 1-phosphate). Forced expression of S1P1 prevented the establishment of T(RM) cells. Cytokines that induced a T(RM) cell phenotype (including transforming growth factor-β (TGF-β), interleukin 33 (IL-33) and tumor-necrosis factor) elicited downregulation of KLF2 expression in a pathway dependent on phosphatidylinositol-3-OH kinase (PI(3)K) and the kinase Akt, which suggested environmental regulation. Hence, regulation of KLF2 and S1P1 provides a switch that dictates whether CD8(+) T cells commit to recirculating or tissue-resident memory populations.

Journal ArticleDOI
TL;DR: This Review discusses how marginal zone B cells function as innate-like lymphocytes that mount rapid antibody responses to both T cell-dependent and Tcell-independent antigens.
Abstract: Protective responses to microorganisms involve the nonspecific but rapid defence mechanisms of the innate immune system, followed by the specific but slow defence mechanisms of the adaptive immune system. Located as sentinels at the interface between the circulation and lymphoid tissue, splenic marginal zone B cells rapidly respond to blood-borne antigens by adopting 'crossover' defensive strategies that blur the conventional boundaries of innate and adaptive immunity. This Review discusses how marginal zone B cells function as innate-like lymphocytes that mount rapid antibody responses to both T cell-dependent and T cell-independent antigens. These responses require the integration of activation signals from germline-encoded and somatically recombined receptors for microorganisms with helper signals from effector cells of the innate and adaptive immune systems.

Journal ArticleDOI
TL;DR: In-patient proof is provided that the observed "on-target" toxicity is antigen-directed and can be prevented by blocking antigenic sites in off-tumor organs and allowing higher T cell doses.

Journal ArticleDOI
TL;DR: Interactions between ILC2 cells and the adaptive immune system, as well as examination of potential roles for I LC2 cells in the maintenance of homeostasis, promise to be particularly fruitful areas of future research.
Abstract: The initiation of type 2 immune responses by the epithelial cell-derived cytokines IL-25, IL-33 and TSLP has been an area of extensive research in the past decade. Such studies have led to the identification of a new innate lymphoid subset that produces the canonical type 2 cytokines IL-5, IL-9 and IL-13 in response to IL-25 and IL-33. These group 2 or type 2 innate lymphoid cells (ILC2 cells) represent a critical source of type 2 cytokines in vivo and serve an important role in orchestrating the type 2 response to helminths and allergens. Further characterization of ILC2 cell biology will enhance the understanding of type 2 responses and may identify new treatments for asthma, allergies and parasitic infections. Interactions between ILC2 cells and the adaptive immune system, as well as examination of potential roles for ILC2 cells in the maintenance of homeostasis, promise to be particularly fruitful areas of future research.

Journal ArticleDOI
TL;DR: In patients with active RA, CD19+CD24hiCD38hi B cells with regulatory function may fail to prevent the development of autoreactive responses and inflammation, leading to autoimmunity.
Abstract: The relevance of regulatory B cells in the maintenance of tolerance in healthy individuals or in patients with immune disorders remains understudied. In healthy individuals, CD19(+)CD24(hi)CD38(hi) B cells suppress CD4(+)CD25(-) T cell proliferation as well as the release of interferon-γ and tumor necrosis factor-α by these cells; this suppression is partially mediated through the production of interleukin-10 (IL-10). We further elucidate the mechanisms of suppression by CD19(+)CD24(hi)CD38(hi) B cells. Healthy CD19(+)CD24(hi)CD38(hi) B cells inhibited naive T cell differentiation into T helper 1 (T(H)1) and T(H)17 cells and converted CD4(+)CD25(-) T cells into regulatory T cells (T(regs)), in part through the production of IL-10. In contrast, CD19(+)CD24(hi)CD38(hi) B cells from patients with rheumatoid arthritis (RA) failed to convert CD4(+)CD25(-) T cells into functionally suppressive T(regs) or to curb T(H)17 development; however, they maintained the capacity to inhibit T(H)1 cell differentiation. Moreover, RA patients with active disease have reduced numbers of CD19(+)CD24(hi)CD38(hi) B cells in peripheral blood compared with either patients with inactive disease or healthy individuals. These results suggest that in patients with active RA, CD19(+)CD24(hi)CD38(hi) B cells with regulatory function may fail to prevent the development of autoreactive responses and inflammation, leading to autoimmunity.

Journal ArticleDOI
TL;DR: The authors identified a subset of CD4+ T cells that were associated with protective antibody responses after seasonal flu vaccination in humans that were influenza antigen–specific, could induce memory B cells to differentiate into plasma cells, and correlated with specific antibody titer.
Abstract: Seasonal influenza vaccine protects 60 to 90% of healthy young adults from influenza infection. The immunological events that lead to the induction of protective antibody responses remain poorly understood in humans. We identified the type of CD4+ T cells associated with protective antibody responses after seasonal influenza vaccinations. The administration of trivalent split-virus influenza vaccines induced a temporary increase of CD4+ T cells expressing ICOS, which peaked at day 7, as did plasmablasts. The induction of ICOS was largely restricted to CD4+ T cells coexpressing the chemokine receptors CXCR3 and CXCR5, a subpopulation of circulating memory T follicular helper cells. Up to 60% of these ICOS+CXCR3+CXCR5+CD4+ T cells were specific for influenza antigens and expressed interleukin-2 (IL-2), IL-10, IL-21, and interferon-γ upon antigen stimulation. The increase of ICOS+CXCR3+CXCR5+CD4+ T cells in blood correlated with the increase of preexisting antibody titers, but not with the induction of primary antibody responses. Consistently, purified ICOS+CXCR3+CXCR5+CD4+ T cells efficiently induced memory B cells, but not naive B cells, to differentiate into plasma cells that produce influenza-specific antibodies ex vivo. Thus, the emergence of blood ICOS+CXCR3+CXCR5+CD4+ T cells correlates with the development of protective antibody responses generated by memory B cells upon seasonal influenza vaccination.


Journal ArticleDOI
TL;DR: A T cell engineered to target one such antigen—MAGE A3—cross-reacts with a peptide from a muscle protein, Titin, which is likely the cause of the off-target toxicity.
Abstract: MAGE A3, which belongs to the family of cancer-testis antigens, is an attractive target for adoptive therapy given its reactivation in various tumors and limited expression in normal tissues. We developed an affinity-enhanced T cell receptor (TCR) directed to a human leukocyte antigen (HLA)–A*01–restricted MAGE A3 antigen (EVDPIGHLY) for use in adoptive therapy. Extensive preclinical investigations revealed no off-target antigen recognition concerns; nonetheless, administration to patients of T cells expressing the affinity-enhanced MAGE A3 TCR resulted in a serious adverse event (SAE) and fatal toxicity against cardiac tissue. We present a description of the preclinical in vitro functional analysis of the MAGE A3 TCR, which failed to reveal any evidence of off-target activity, and a full analysis of the post-SAE in vitro investigations, which reveal cross-recognition of an off-target peptide. Using an amino acid scanning approach, a peptide from the muscle protein Titin (ESDPIVAQY) was identified as an alternative target for the MAGE A3 TCR and the most likely cause of in vivo toxicity. These results demonstrate that affinity-enhanced TCRs have considerable effector functions in vivo and highlight the potential safety concerns for TCR-engineered T cells. Strategies such as peptide scanning and the use of more complex cell cultures are recommended in preclinical studies to mitigate the risk of off-target toxicity in future clinical investigations.