scispace - formally typeset
Search or ask a question

Showing papers on "SOX2 published in 2011"


Journal ArticleDOI
TL;DR: It is shown that expression of the miR302/367 cluster rapidly and efficiently reprograms mouse and human somatic cells to an iPSC state without a requirement for exogenous transcription factors, and that miRNA and Hdac-mediated pathways can cooperate in a powerful way to reprogram somatics cells to pluripotency.

1,210 citations


Journal ArticleDOI
TL;DR: It is shown here that it is possible to reprogram mouse and human cells to pluripotency by direct transfection of mature double-stranded microRNAs (miRNAs) and it holds significant potential for biomedical research and regenerative medicine.

757 citations


Journal ArticleDOI
TL;DR: It is shown that Sox2 marks adult cells in several epithelial tissues where its expression has not previously been characterized, including the stomach, cervix, anus, testes, lens, and multiple glands.

654 citations


Journal ArticleDOI
TL;DR: It is shown that conventional reprogramming towards pluripotency through overexpression of Oct4, Sox2, Klf4 and c-Myc can be shortcut and directed towards cardiogenesis in a fast and efficient manner.
Abstract: Here we show that conventional reprogramming towards pluripotency through overexpression of Oct4, Sox2, Klf4 and c-Myc can be shortcut and directed towards cardiogenesis in a fast and efficient manner. With as little as 4 days of transgenic expression of these factors, mouse embryonic fibroblasts (MEFs) can be directly reprogrammed to spontaneously contracting patches of differentiated cardiomyocytes over a period of 11-12 days. Several lines of evidence suggest that a pluripotent intermediate is not involved. Our method represents a unique strategy that allows a transient, plastic developmental state established early in reprogramming to effectively function as a cellular transdifferentiation platform, the use of which could extend beyond cardiogenesis. Our study has potentially wide-ranging implications for induced pluripotent stem cell (iPSC)-factor-based reprogramming and broadens the existing paradigm.

637 citations


Journal ArticleDOI
TL;DR: In this paper, transient induction of the four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) can efficiently transdifferentiate fibroblasts into functional neural stem/progenitor cells (NPCs) with appropriate signaling inputs.
Abstract: The simple yet powerful technique of induced pluripotency may eventually supply a wide range of differentiated cells for cell therapy and drug development. However, making the appropriate cells via induced pluripotent stem cells (iPSCs) requires reprogramming of somatic cells and subsequent redifferentiation. Given how arduous and lengthy this process can be, we sought to determine whether it might be possible to convert somatic cells into lineage-specific stem/progenitor cells of another germ layer in one step, bypassing the intermediate pluripotent stage. Here we show that transient induction of the four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) can efficiently transdifferentiate fibroblasts into functional neural stem/progenitor cells (NPCs) with appropriate signaling inputs. Compared with induced neurons (or iN cells, which are directly converted from fibroblasts), transdifferentiated NPCs have the distinct advantage of being expandable in vitro and retaining the ability to give rise to multiple neuronal subtypes and glial cells. Our results provide a unique paradigm for iPSC-factor–based reprogramming by demonstrating that it can be readily modified to serve as a general platform for transdifferentiation.

574 citations


Journal ArticleDOI
10 Jun 2011-Cell
TL;DR: By analyzing the dynamics of the transcriptional circuit that maintains pluripotency, it is found that Oct4 and Sox2, proteins that maintain ESC identity, also orchestrate germ layer fate selection.

520 citations


Journal ArticleDOI
TL;DR: The findings suggest that hiPSCs give rise to neural stem/progenitor cells that support improved function post-SCI and are a promising cell source for its treatment.
Abstract: Once their safety is confirmed, human-induced pluripotent stem cells (hiPSCs), which do not entail ethical concerns, may become a preferred cell source for regenerative medicine. Here, we investigated the therapeutic potential of transplanting hiPSC-derived neurospheres (hiPSC-NSs) into nonobese diabetic (NOD)-severe combined immunodeficient (SCID) mice to treat spinal cord injury (SCI). For this, we used a hiPSC clone (201B7), established by transducing four reprogramming factors (Oct3/4, Sox2, Klf4, and c-Myc) into adult human fibroblasts. Grafted hiPSC-NSs survived, migrated, and differentiated into the three major neural lineages (neurons, astrocytes, and oligodendrocytes) within the injured spinal cord. They showed both cell-autonomous and noncell-autonomous (trophic) effects, including synapse formation between hiPSC-NS–derived neurons and host mouse neurons, expression of neurotrophic factors, angiogenesis, axonal regrowth, and increased amounts of myelin in the injured area. These positive effects resulted in significantly better functional recovery compared with vehicle-treated control animals, and the recovery persisted through the end of the observation period, 112 d post-SCI. No tumor formation was observed in the hiPSC-NS–grafted mice. These findings suggest that hiPSCs give rise to neural stem/progenitor cells that support improved function post-SCI and are a promising cell source for its treatment.

491 citations


Journal ArticleDOI
TL;DR: Hypoxia, through hypoxia-inducible factor (HIF), can induce an hESC-like transcriptional program, including the induced pluripotent stem cell (iPSC) inducers, OCT4, NANOG, SOX2, KLF4, cMYC, and microRNA-302 in 11 cancer cell lines.
Abstract: Low oxygen levels have been shown to promote self-renewal in many stem cells. In tumors, hypoxia is associated with aggressive disease course and poor clinical outcomes. Furthermore, many aggressive tumors have been shown to display gene expression signatures characteristic of human embryonic stem cells (hESC). We now tested whether hypoxia might be responsible for the hESC signature observed in aggressive tumors. We show that hypoxia, through hypoxia-inducible factor (HIF), can induce an hESC-like transcriptional program, including the induced pluripotent stem cell (iPSC) inducers, OCT4, NANOG, SOX2, KLF4, cMYC, and microRNA-302 in 11 cancer cell lines (from prostate, brain, kidney, cervix, lung, colon, liver, and breast tumors). Furthermore, nondegradable forms of HIFα, combined with the traditional iPSC inducers, are highly efficient in generating A549 iPSC-like colonies that have high tumorigenic capacity. To test potential correlation between iPSC inducers and HIF expression in primary tumors, we analyzed primary prostate tumors and found a significant correlation between NANOG-, OCT4-, and HIF1α-positive regions. Furthermore, NANOG and OCT4 expressions positively correlated with increased prostate tumor Gleason score. In primary glioma-derived CD133 negative cells, hypoxia was able to induce neurospheres and hESC markers. Together, these findings suggest that HIF targets may act as key inducers of a dynamic state of stemness in pathologic conditions.

462 citations


Journal ArticleDOI
09 Jun 2011-Nature
TL;DR: DNA microarray analyses show that Glis1 effectively promotes the direct reprogramming of somatic cells during iPSC generation, including Myc, Nanog, Lin28, Wnt, Essrb and the mesenchymal–epithelial transition.
Abstract: Reprogramming of differentiated somatic cells to induced pluripotent stem (iPS) cells by exogenous expression of key transcription factors (Oct4, Sox2, Klf4 and c-Myc) has potential therapeutic applications. c-Myc enhances the efficiency of reprogramming, but the safety of using this oncogene has long been a concern. Now, Shinya Yamanaka and colleagues have found that the transcription factor Glis1 effectively and specifically promotes reprogramming of human and mouse somatic cells to iPS cells. Glis1 is highly enriched in unfertilized eggs and one-cell-stage embryos, and might be a link between reprogramming during iPS cell generation and after nuclear transfer into zygotes. Induced pluripotent stem cells (iPSCs) are generated from somatic cells by the transgenic expression of three transcription factors collectively called OSK: Oct3/4 (also called Pou5f1), Sox2 and Klf41. However, the conversion to iPSCs is inefficient. The proto-oncogene Myc enhances the efficiency of iPSC generation by OSK but it also increases the tumorigenicity of the resulting iPSCs2. Here we show that the Gli-like transcription factor Glis1 (Glis family zinc finger 1) markedly enhances the generation of iPSCs from both mouse and human fibroblasts when it is expressed together with OSK. Mouse iPSCs generated using this combination of transcription factors can form germline-competent chimaeras. Glis1 is enriched in unfertilized oocytes and in embryos at the one-cell stage. DNA microarray analyses show that Glis1 promotes multiple pro-reprogramming pathways, including Myc, Nanog, Lin28, Wnt, Essrb and the mesenchymal–epithelial transition. These results therefore show that Glis1 effectively promotes the direct reprogramming of somatic cells during iPSC generation.

389 citations


Journal ArticleDOI
TL;DR: These findings identified miR-34 miRNAs as p53 targets that play an essential role in restraining somatic reprogramming.
Abstract: Somatic reprogramming induced by defined transcription factors is a low-efficiency process that is enhanced by p53 deficiency. So far, p21 is the only p53 target shown to contribute to p53 repression of iPSC (induced pluripotent stem cell) generation, indicating that additional p53 targets may regulate this process. Here, we demonstrate that miR-34 microRNAs (miRNAs), particularly miR-34a, exhibit p53-dependent induction during reprogramming. Mir34a deficiency in mice significantly increased reprogramming efficiency and kinetics, with miR-34a and p21 cooperatively regulating somatic reprogramming downstream of p53. Unlike p53 deficiency, which enhances reprogramming at the expense of iPSC pluripotency, genetic ablation of Mir34a promoted iPSC generation without compromising self-renewal or differentiation. Suppression of reprogramming by miR-34a was due, at least in part, to repression of pluripotency genes, including Nanog, Sox2 and Mycn (also known as N-Myc). This post-transcriptional gene repression by miR-34a also regulated iPSC differentiation kinetics. miR-34b and c similarly repressed reprogramming; and all three miR-34 miRNAs acted cooperatively in this process. Taken together, our findings identified miR-34 miRNAs as p53 targets that play an essential role in restraining somatic reprogramming.

366 citations


Journal ArticleDOI
TL;DR: A novel replication-defective and persistent Sendai virus (SeVdp) vector based on a noncytopathic variant virus, which fulfills all of the requirements for cell reprogramming and for stem cell research is reported.

Journal ArticleDOI
TL;DR: Together, these results provide for the first time a comprehensive molecular model connecting the transition from pluripotency to endoderm specification during mammalian development.
Abstract: Understanding the molecular mechanisms controlling early cell fate decisions in mammals is a major objective toward the development of robust methods for the differentiation of human pluripotent stem cells into clinically relevant cell types. Here, we used human embryonic stem cells and mouse epiblast stem cells to study specification of definitive endoderm in vitro. Using a combination of whole-genome expression and chromatin immunoprecipitation (ChIP) deep sequencing (ChIP-seq) analyses, we established an hierarchy of transcription factors regulating endoderm specification. Importantly, the pluripotency factors NANOG, OCT4, and SOX2 have an essential function in this network by actively directing differentiation. Indeed, these transcription factors control the expression of EOMESODERMIN (EOMES), which marks the onset of endoderm specification. In turn, EOMES interacts with SMAD2/3 to initiate the transcriptional network governing endoderm formation. Together, these results provide for the first time a comprehensive molecular model connecting the transition from pluripotency to endoderm specification during mammalian development.

Journal ArticleDOI
TL;DR: This work identifies a specific chemical combination, which is sufficient to permit reprogramming from mouse embryonic and adult fibroblasts in the presence of a single transcription factor, Oct4, within 20 days, replacing Sox2, Klf4 and c-Myc.
Abstract: The introduction of four transcription factors Oct4, Klf4, Sox2 and c-Myc by viral transduction can induce reprogramming of somatic cells into induced pluripotent stem cells (iPSCs), but the use of iPSCs is hindered by the use of viral delivery systems. Chemical-induced reprogramming offers a novel approach to generating iPSCs without any viral vector-based genetic modification. Previous reports showed that several small molecules could replace some of the reprogramming factors although at least two transcription factors, Oct4 and Klf4, are still required to generate iPSCs from mouse embryonic fibroblasts. Here, we identify a specific chemical combination, which is sufficient to permit reprogramming from mouse embryonic and adult fibroblasts in the presence of a single transcription factor, Oct4, within 20 days, replacing Sox2, Klf4 and c-Myc. The iPSCs generated using this treatment resembled mouse embryonic stem cells in terms of global gene expression profile, epigenetic status and pluripotency both in vitro and in vivo. We also found that 8 days of Oct4 induction was sufficient to enable Oct4-induced reprogramming in the presence of the small molecules, which suggests that reprogramming was initiated within the first 8 days and was independent of continuous exogenous Oct4 expression. These discoveries will aid in the future generation of iPSCs without genetic modification, as well as elucidating the molecular mechanisms that underlie the reprogramming process.

Journal ArticleDOI
TL;DR: The data indicate that stoichiometry of reprogramming factors can influence epigenetic and biological properties of iPS cells and should be considered when comparing different iPS and ES cell lines.

Journal ArticleDOI
TL;DR: In this paper, cellular microRNAs (miRNAs) regulate iPSC generation and showed that miRNAs function in the reprogramming process and that IPSC induction efficiency can be greatly enhanced by modulating miRNA levels in cells.
Abstract: Somatic cells can be reprogrammed to an ES-like state to create induced pluripotent stem cells (iPSCs) by ectopic expression of four transcription factors, Oct4, Sox2, Klf4 and cMyc. Here, we show that cellular microRNAs (miRNAs) regulate iPSC generation. Knock-down of key microRNA pathway proteins resulted in significant decreases in reprogramming efficiency. Three miRNA clusters, miR-17∼92, miR-106b∼25 and miR-106a∼363, were shown to be highly induced during early reprogramming stages. Several miRNAs, including miR-93 and miR-106b, which have very similar seed regions, greatly enhanced iPSC induction and modulated mesenchymal-to-epithelial transition step in the initiation stage of reprogramming, and inhibiting these miRNAs significantly decreased reprogramming efficiency. Moreover, miR-iPSC clones reached the fully reprogrammed state. Further analysis revealed that Tgfbr2 and p21 are directly targeted by these miRNAs and that siRNA knock-down of both genes indeed enhanced iPSC induction. Here, for the first time, we demonstrate that miR-93 and its family members directly target TGF-β receptor II to enhance iPSC generation. Overall, we demonstrate that miRNAs function in the reprogramming process and that iPSC induction efficiency can be greatly enhanced by modulating miRNA levels in cells.

Journal ArticleDOI
TL;DR: During cellular reprogramming of mouse fibroblasts by OCT4, SOX2, KLF4 and c‐MYC, fully reprogrammed cells were exclusively observed in the E‐cadherin‐positive cell population and could not be obtained in the absence of E‐ caderin.
Abstract: We report new functions of the cell-adhesion molecule E-cadherin in murine pluripotent cells. E-cadherin is highly expressed in mouse embryonic stem cells, and interference with E-cadherin causes differentiation. During cellular reprogramming of mouse fibroblasts by OCT4, SOX2, KLF4 and c-MYC, fully reprogrammed cells were exclusively observed in the E-cadherin-positive cell population and could not be obtained in the absence of E-cadherin. Moreover, reprogrammed cells could be established by viral E-cadherin in the absence of exogenous OCT4. Thus, reprogramming requires spatial cues that cross-talk with essential transcription factors. The cell-adhesion molecule E-cadherin has important functions in pluripotency and reprogramming.

Journal ArticleDOI
TL;DR: The ability to modulate immune responses makes hWJSCs an important compatible stem cell source for transplantation therapy in allogeneic settings without immunorejection and provides a foundation for future functional studies where the exact mechanisms of these unique properties of hW JSCs can be confirmed.
Abstract: The human umbilical cord that originates from the embryo is an extra-embryonic membrane and the Wharton’s jelly within it is a rich source of stem cells (hWJSCs). It is not definitely known whether these cells behave as human embryonic stem cells (hESCs), human mesenchymal stem cells (hMSC) or both. They have the unique properties of high proliferation rates, wide multipotency, hypoimmunogenicity, do not induce teratomas and have anticancer properties. These advantages are important considerations for their use in cell based therapies and treatment of cancers. In a search for properties that confer these advantages we compared a detailed transcriptome profiling of hWJSCs using DNA microarrays with that of a panel of known hESCs, hMSCs and stromal cells. hWJSCs expressed low levels of the pluripotent embryonic stem cell markers including POUF1, NANOG, SOX2 and LIN28, thus explaining why they do not produce teratomas. Several cytokines were significantly upregulated in hWJSCs including IL12A which is associated with the induction of apoptosis, thus explaining their anticancer properties. When GO Biological Process analysis was compared between the various stem cell types, hWJSCs showed an increased expression of genes associated with the immune system, chemotaxis and cell death. The ability to modulate immune responses makes hWJSCs an important compatible stem cell source for transplantation therapy in allogeneic settings without immunorejection. The data in the present study which is the first detailed report on hWJSC transcriptomes provide a foundation for future functional studies where the exact mechanisms of these unique properties of hWJSCs can be confirmed.

Journal ArticleDOI
TL;DR: It is demonstrated that proper mitochondrial function is essential for proliferation of undifferentiated ESCs, and normal mitochondrial function in ESC proliferation, regulating differentiation, and preventing the emergence of tumorigenic cells during the process of differentiation.
Abstract: Pluripotent stem cells hold significant promise in regenerative medicine due to their unlimited capacity for self-renewal and potential to differentiate into any cell type of the body. In this study, we demonstrate that proper mitochondrial function is essential for proliferation of undifferentiated ESCs. Attenuating mitochondrial function under self-renewing conditions makes these cells more glycolytic-dependent, and it is associated with an increase in the mRNA reserves of Nanog, Oct4, and Sox2. In contrast, attenuating mitochondrial function during the first 7 days of differentiation results in normal repression of Oct4, Nanog, and Sox2. However, differentiation potential is compromised as revealed by abnormal transcription of multiple Hox genes. Furthermore, under differentiating conditions in which mitochondrial function is attenuated, tumorigenic cells continue to persist. Our results, therefore establish the importance of normal mitochondrial function in ESC proliferation, regulating differentiation, and preventing the emergence of tumorigenic cells during the process of differentiation. STEM CELLS 2011;486–495

Journal ArticleDOI
TL;DR: Describing the genome-wide binding for Sox2, Sox3, and Sox11 indicates that a single key transcription factor family acts sequentially to coordinate neural gene expression from the early lineage specification in pluripotent cells to later stages of neuronal development.
Abstract: Pluripotent embryonic stem (ES) cells can generate all cell types, but how cell lineages are initially specified and maintained during development remains largely unknown. Different classes of Sox transcription factors are expressed during neurogenesis and have been assigned important roles from early lineage specification to neuronal differentiation. Here we characterize the genome-wide binding for Sox2, Sox3, and Sox11, which have vital functions in ES cells, neural precursor cells (NPCs), and maturing neurons, respectively. The data demonstrate that Sox factor binding depends on developmental stage-specific constraints and reveal a remarkable sequential binding of Sox proteins to a common set of neural genes. Interestingly, in ES cells, Sox2 preselects for neural lineage-specific genes destined to be bound and activated by Sox3 in NPCs. In NPCs, Sox3 binds genes that are later bound and activated by Sox11 in differentiating neurons. Genes prebound by Sox proteins are associated with a bivalent chromatin signature, which is resolved into a permissive monovalent state upon binding of activating Sox factors. These data indicate that a single key transcription factor family acts sequentially to coordinate neural gene expression from the early lineage specification in pluripotent cells to later stages of neuronal development.

Journal ArticleDOI
TL;DR: It is shown that an antagonistic relationship between Wnt3a and Tcf3 on gene expression regulates ESC self-renewal, and the molecular link between the effects of Wnt and the regulation of the Oct4/Sox2/Nanog network is elucidates.
Abstract: The co-occupancy of Tcf3 with Oct4, Sox2 and Nanog on embryonic stem cell (ESC) chromatin indicated that Tcf3 has been suggested to play an integral role in a poorly understood mechanism underlying Wnt-dependent stimulation of mouse ESC self-renewal of mouse ESCs. Although the conventional view of Tcf proteins as the β-catenin-binding effectors of Wnt signalling suggested Tcf3-β-catenin activation of target genes would stimulate self-renewal, here we show that an antagonistic relationship between Wnt3a and Tcf3 on gene expression regulates ESC self-renewal. Genetic ablation of Tcf3 replaced the requirement for exogenous Wnt3a or GSK3 inhibition for ESC self-renewal, demonstrating that inhibition of Tcf3 repressor is the necessary downstream effect of Wnt signalling. Interestingly, both Tcf3-β-catenin and Tcf1-β-catenin interactions contributed to Wnt stimulation of self-renewal and gene expression, and the combination of Tcf3 and Tcf1 recruited Wnt-stabilized β-catenin to Oct4 binding sites on ESC chromatin. This work elucidates the molecular link between the effects of Wnt and the regulation of the Oct4/Sox2/Nanog network.

Journal ArticleDOI
29 Apr 2011-PLOS ONE
TL;DR: In this article, a study was designed to determine whether adult mouse induced pluripotent stem cells (iPSCs) could be used to produce retinal precursors and subsequently photoreceptor cells for retinal transplantation to restore retinal function in degenerative hosts.
Abstract: This study was designed to determine whether adult mouse induced pluripotent stem cells (iPSCs), could be used to produce retinal precursors and subsequently photoreceptor cells for retinal transplantation to restore retinal function in degenerative hosts. iPSCs were generated using adult dsRed mouse dermal fibroblasts via retroviral induction of the transcription factors Oct4, Sox2, KLF4 and c-Myc. As with normal mouse ES cells, adult dsRed iPSCs expressed the pluripotency genes SSEA1, Oct4, Sox2, KLF4, c-Myc and Nanog. Following transplantation into the eye of immune-compromised retinal degenerative mice these cells proceeded to form teratomas containing tissue comprising all three germ layers. At 33 days post-differentiation a large proportion of the cells expressed the retinal progenitor cell marker Pax6 and went on to express the photoreceptor markers, CRX, recoverin, and rhodopsin. When tested using calcium imaging these cells were shown to exhibit characteristics of normal retinal physiology, responding to delivery of neurotransmitters. Following subretinal transplantation into degenerative hosts differentiated iPSCs took up residence in the retinal outer nuclear layer and gave rise to increased electro retinal function as determined by ERG and functional anatomy. As such, adult fibroblast-derived iPSCs provide a viable source for the production of retinal precursors to be used for transplantation and treatment of retinal degenerative disease.

Journal ArticleDOI
TL;DR: This work has successfully delivered entire miRNA clusters into reprogramming fibroblasts using retroviral vectors and adds new evidence for the emerging relationship between pluripotency and the epithelial phenotype.

Journal ArticleDOI
TL;DR: It is demonstrated that in adult human fibroblasts a subset of preexisting adult stem cells selectively become iPS cells, but the remaining cells make no contribution to the generation of i PS cells.
Abstract: The stochastic and elite models have been proposed for the mechanism of induced pluripotent stem (iPS) cell generation. In this study we report a system that supports the elite model. We previously identified multilineage-differentiating stress-enduring (Muse) cells in human dermal fibroblasts that are characterized by stress tolerance, expression of pluripotency markers, self-renewal, and the ability to differentiate into endodermal-, mesodermal-, and ectodermal-lineage cells from a single cell. They can be isolated as stage-specific embryonic antigen-3/CD105 double-positive cells. When human fibroblasts were separated into Muse and non-Muse cells and transduced with Oct3/4, Sox2, Klf4, and c-Myc, iPS cells were generated exclusively from Muse cells but not from non-Muse cells. Although some colonies were formed from non-Muse cells, they were unlike iPS cells. Furthermore, epigenetic alterations were not seen, and some of the major pluripotency markers were not expressed for the entire period during iPS cell generation. These findings were confirmed further using cells transduced with a single polycistronic virus vector encoding all four factors. The results demonstrate that in adult human fibroblasts a subset of preexisting adult stem cells whose properties are similar in some respects to those of iPS cells selectively become iPS cells, but the remaining cells make no contribution to the generation of iPS cells. Therefore this system seems to fit the elite model rather than the stochastic model.

Journal ArticleDOI
TL;DR: It is reported that enhancing RA signaling by expressing RA receptors (RARs) or by RA agonists profoundly promoted reprogramming, but inhibiting it using a RAR-α dominant-negative form completely blocked it.
Abstract: Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by expressing four transcription factors: Oct4, Sox2, Klf4, and c-Myc. Here we report that enhancing RA signaling by expressing RA receptors (RARs) or by RA agonists profoundly promoted reprogramming, but inhibiting it using a RAR-α dominant-negative form completely blocked it. Coexpressing Rarg (RAR-γ) and Lrh-1 (liver receptor homologue 1; Nr5a2) with the four factors greatly accelerated reprogramming so that reprogramming of mouse embryonic fibroblast cells to ground-state iPSCs requires only 4 d induction of these six factors. The six-factor combination readily reprogrammed primary human neonatal and adult fibroblast cells to exogenous factor-independent iPSCs, which resembled ground-state mouse ES cells in growth properties, gene expression, and signaling dependency. Our findings demonstrate that signaling through RARs has critical roles in molecular reprogramming and that the synergistic interaction between Rarg and Lrh1 directs reprogramming toward ground-state pluripotency. The human iPSCs described here should facilitate functional analysis of the human genome.

Journal ArticleDOI
TL;DR: The current knowledge of iPS generation is summarized, the need for improvement of the reprogramming procedure not only in quantity but also in quality is suggested, and future reprograming methods for medical application are discussed.
Abstract: Somatic cells have been reprogrammed into pluripotent stem cells by introducing a combination of several transcription factors, such as Oct3/4, Sox2, Klf4 and c-Myc. Induced pluripotent stem (iPS) cells from a patient's somatic cells could be a useful source for drug discovery and cell transplantation therapies. However, most human iPS cells are made by viral vectors, such as retrovirus and lentivirus, which integrate the reprogramming factors into the host genomes and may increase the risk of tumour formation. Several non-integration methods have been reported to overcome the safety concern associated with the generation of iPS cells, such as transient expression of the reprogramming factors using adenovirus vectors or plasmids, and direct delivery of reprogramming proteins. Although these transient expression methods could avoid genomic alteration of iPS cells, they are inefficient. Several studies of gene expression, epigenetic modification and differentiation revealed the insufficient reprogramming of iPS cells, thus suggesting the need for improvement of the reprogramming procedure not only in quantity but also in quality. This report will summarize the current knowledge of iPS generation and discuss future reprogramming methods for medical application.

Journal ArticleDOI
TL;DR: Regulation of disease-associated genes by a Sox2-Chd7 complex provides a plausible explanation for several malformations associated with SOX2 anophthalmia syndrome or CHARGE syndrome.
Abstract: The HMG-box transcription factor Sox2 plays a role throughout neurogenesis and also acts at other stages of development, as illustrated by the multiple organs affected in the anophthalmia syndrome caused by SOX2 mutations. Here we combined proteomic and genomic approaches to characterize gene regulation by Sox2 in neural stem cells. Chd7, a chromatin remodeling ATPase associated with CHARGE syndrome, was identified as a Sox2 transcriptional cofactor. Sox2 and Chd7 physically interact, have overlapping genome-wide binding sites and regulate a set of common target genes including Jag1, Gli3 and Mycn, genes mutated in Alagille, Pallister-Hall and Feingold syndromes, which show malformations also associated with SOX2 anophthalmia syndrome or CHARGE syndrome. Regulation of disease-associated genes by a Sox2-Chd7 complex provides a plausible explanation for several malformations associated with SOX2 anophthalmia syndrome or CHARGE syndrome. Indeed, we found that Chd7-haploinsufficient embryos showed severely reduced expression of Jag1 in the developing inner ear.

Journal ArticleDOI
TL;DR: Using these novel chemical inhibitors as probes, these findings establish LSD1 and histone H3K4 methylation as essential cancer-selective epigenetic targets in cancer cells that have pluripotent stem cell properties.
Abstract: Histone modification determines epigenetic patterns of gene expression with methylation of histone H3 at lysine 4 (H3K4) often associated with active promoters. LSD1/KDM1 is a histone demethylase that suppresses gene expression by converting dimethylated H3K4 to mono- and unmethylated H3K4. LSD1 is essential for metazoan development, but its pathophysiologic functions in cancer remain mainly uncharacterized. In this study, we developed specific bioactive small inhibitors of LSD1 that enhance H3K4 methylation and derepress epigenetically suppressed genes in vivo. Strikingly, these compounds inhibited the proliferation of pluripotent cancer cells including teratocarcinoma, embryonic carcinoma, and seminoma or embryonic stem cells that express the stem cell markers Oct4 and Sox2 while displaying minimum growth-inhibitory effects on non-pluripotent cancer or normal somatic cells. RNA interference-mediated knockdown of LSD1 expression phenocopied these effects, confirming the specificity of small molecules and further establishing the high degree of sensitivity and selectivity of pluripotent cancer cells to LSD1 ablation. In support of these results, we found that LSD1 protein level is highly elevated in pluripotent cancer cells and in human testicular seminoma tissues that express Oct4. Using these novel chemical inhibitors as probes, our findings establish LSD1 and histone H3K4 methylation as essential cancer-selective epigenetic targets in cancer cells that have pluripotent stem cell properties.

Journal ArticleDOI
TL;DR: It is shown that FoxO1 is essential for the maintenance of human ESC pluripotency, and that an orthologue of FOXO1 (Foxo1) exerts a similar function in mouse ESCs, and suggests that AKT is not the predominant regulator ofFOXO1 in human ESCs.
Abstract: Pluripotency of embryonic stem cells (ESCs) is defined by their ability to differentiate into three germ layers and derivative cell types and is established by an interactive network of proteins including OCT4 (also known as POU5F1; ref. 4), NANOG (refs 5, 6), SOX2 (ref. 7) and their binding partners. The forkhead box O (FoxO) transcription factors are evolutionarily conserved regulators of longevity and stress response whose function is inhibited by AKT protein kinase. FoxO proteins are required for the maintenance of somatic and cancer stem cells; however, their function in ESCs is unknown. We show that FOXO1 is essential for the maintenance of human ESC pluripotency, and that an orthologue of FOXO1 (Foxo1) exerts a similar function in mouse ESCs. This function is probably mediated through direct control by FOXO1 of OCT4 and SOX2 gene expression through occupation and activation of their respective promoters. Finally, AKT is not the predominant regulator of FOXO1 in human ESCs. Together these results indicate that FOXO1 is a component of the circuitry of human ESC pluripotency. These findings have critical implications for stem cell biology, development, longevity and reprogramming, with potentially important ramifications for therapy.

Journal ArticleDOI
TL;DR: In this article, the tyrosine kinase c-Met activation was found to induce the expression of reprogramming transcription factors known to support embryonic stem cells and induce differentiated cells to form pluripotent stem (iPS) cells.
Abstract: The tyrosine kinase c-Met promotes the formation and malignant progression of multiple cancers. It is well known that c-Met hyperactivation increases tumorigenicity and tumor cell resistance to DNA damaging agents, properties associated with tumor-initiating stem cells. However, a link between c-Met signaling and the formation and/or maintenance of neoplastic stem cells has not been previously identified. Here, we show that c-Met is activated and functional in glioblastoma (GBM) neurospheres enriched for glioblastoma tumor-initiating stem cells and that c-Met expression/function correlates with stem cell marker expression and the neoplastic stem cell phenotype in glioblastoma neurospheres and clinical glioblastoma specimens. c-Met activation was found to induce the expression of reprogramming transcription factors (RFs) known to support embryonic stem cells and induce differentiated cells to form pluripotent stem (iPS) cells, and c-Met activation counteracted the effects of forced differentiation in glioblastoma neurospheres. Expression of the reprogramming transcription factor Nanog by glioblastoma cells is shown to mediate the ability of c-Met to induce the stem cell characteristics of neurosphere formation and neurosphere cell self-renewal. These findings show that c-Met enhances the population of glioblastoma stem cells (GBM SCs) via a mechanism requiring Nanog and potentially other c-Met–responsive reprogramming transcription factors.

Journal ArticleDOI
TL;DR: The generation of iPS cells from equine fibroblasts are generation using a piggyBac (PB) transposon-based method to deliver transgenes containing the reprogramming factors Oct4, Sox2, Klf4 and c-Myc, expressed in a temporally regulated fashion.
Abstract: The domesticated horse represents substantial value for the related sports and recreational fields, and holds enormous potential as a model for a range of medical conditions commonly found in humans. Most notable of these are injuries to muscles, tendons, ligaments and joints. Induced pluripotent stem (iPS) cells have sparked tremendous hopes for future regenerative therapies of conditions that today are not possible to cure. Equine iPS (EiPS) cells, in addition to bringing promises to the veterinary field, open up the opportunity to utilize horses for the validation of stem cell based therapies before moving into the human clinical setting. In this study, we report the generation of iPS cells from equine fibroblasts using a piggyBac (PB) transposon-based method to deliver transgenes containing the reprogramming factors Oct4, Sox2, Klf4 and c-Myc, expressed in a temporally regulated fashion. The established iPS cell lines express hallmark pluripotency markers, display a stable karyotype even during long-term culture, and readily form complex teratomas containing all three embryonic germ layer derived tissues upon in vivo grafting into immunocompromised mice. Our EiPS cell lines hold the promise to enable the development of a whole new range of stem cell-based regenerative therapies in veterinary medicine, as well as aid the development of preclinical models for human applications. EiPS cell could also potentially be used to revive recently extinct or currently threatened equine species.