scispace - formally typeset
Open AccessJournal ArticleDOI

AEDGE: Atomic experiment for dark matter and gravity exploration in space

Yousef Abou El-Neaj, +139 more
- 04 Mar 2020 - 
- Vol. 7, Iss: 1, pp 6-32
TLDR
The Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE) as mentioned in this paper is a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments.
Abstract
We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

AION: An Atom Interferometer Observatory and Network

TL;DR: AION (Atom Interferometer Observatory and Network) as mentioned in this paper is a proposed UK-based experimental program using cold strontium atoms to search for ultra-light dark matter, to explore gravitational waves in the mid-frequency range between the peak sensitivities of the LISA and LIGO/Virgo/ KAGRA/INDIGO-Einstein Telescope/Cosmic Explorer experiments, and to probe other frontiers in fundamental physics.
Journal ArticleDOI

NANOGrav Data Hints at Primordial Black Holes as Dark Matter.

TL;DR: It is shown that such a signal can be explained by second-order gravitational waves produced during the formation of primordial black holes from the collapse of sizeable scalar perturbations generated during inflation.
Journal ArticleDOI

Cosmic String Interpretation of NANOGrav Pulsar Timing Data

TL;DR: The NANOGrav Collaboration has recently reported strong evidence for a stochastic common-spectrum process, which is interpreted as a SGWB in the framework of cosmic strings, which would correspond to a string tension Gμ∈(4×10^{-11}, 10^{-10}) at the 68% confidence level.

A New Method for Gravitational Wave Detection with Atomic Sensors

TL;DR: A new detection strategy based on recent advances in optical atomic clocks and atom interferometry which can operate at long baselines and which is immune to laser frequency noise is described, which allows sensitive gravitational wave detection with only a single baseline.
References
More filters
Journal ArticleDOI

The Demography of massive dark objects in galaxy centers

TL;DR: In this article, the authors constructed dynamical models for a sample of 36 nearby galaxies with Hubble Space Telescope (HST) photometry and ground-based kinematics, assuming that each galaxy is axisymmetric, with a two-integral distribution function, arbitrary inclination angle, a position-independent stellar mass-to-light ratio, and a central massive dark object of arbitrary mass M•.
Journal ArticleDOI

The Demography of Massive Dark Objects in Galaxy Centres

TL;DR: In this article, the authors constructed dynamical models for a sample of 36 nearby galaxies with Hubble Space Telescope photometry and ground-based kinematics, assuming that each galaxy is axisymmetric, with a two-integral distribution function, arbitrary inclination angle, a position-independent stellar mass-to-light ratio Upsilon, and a central massive dark object of arbitrary mass M_bh.
Journal ArticleDOI

Advanced Virgo: a second-generation interferometric gravitational wave detector

Fausto Acernese, +233 more
TL;DR: Advanced Virgo as mentioned in this paper is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude.
Journal ArticleDOI

First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole

Kazunori Akiyama, +406 more
TL;DR: In this article, the Event Horizon Telescope was used to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87.
Journal ArticleDOI

Cosmology of the invisible axion

TL;DR: In this article, the authors identify a new cosmological problem for models which solve the strong CP puzzle with an invisible axion, unrelated to the domain wall problem, and identify the energy density stored in the oscillations of the classical axion field does not dissipate rapidly; it exceeds the critical density needed to close the universe unless fa ⩽ 1012GeV wherefa is the axion decay constant.
Related Papers (5)

The Einstein Telescope: a third-generation gravitational wave observatory

M. Punturo, +134 more

Sensitivity studies for third-generation gravitational wave observatories

Stefan Hild, +141 more

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more