scispace - formally typeset
Open AccessJournal ArticleDOI

Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells

Reads0
Chats0
TLDR
These patient-derived hepatocytes demonstrate that it is possible to model diseases whose phenotypes are caused by pathological dysregulation of key processes within adult cells, and a simple and effective platform for hepatocyte generation from patient-specific human iPS cells.
Abstract
Human induced pluripotent stem (iPS) cells hold great promise for advancements in developmental biology, cell-based therapy, and modeling of human disease. Here, we examined the use of human iPS cells for modeling inherited metabolic disorders of the liver. Dermal fibroblasts from patients with various inherited metabolic diseases of the liver were used to generate a library of patient-specific human iPS cell lines. Each line was differentiated into hepatocytes using what we believe to be a novel 3-step differentiation protocol in chemically defined conditions. The resulting cells exhibited properties of mature hepatocytes, such as albumin secretion and cytochrome P450 metabolism. Moreover, cells generated from patients with 3 of the inherited metabolic conditions studied in further detail (α1-antitrypsin deficiency, familial hypercholesterolemia, and glycogen storage disease type 1a) were found to recapitulate key pathological features of the diseases affecting the patients from which they were derived, such as aggregation of misfolded α1-antitrypsin in the endoplasmic reticulum, deficient LDL receptor–mediated cholesterol uptake, and elevated lipid and glycogen accumulation. Therefore, we report a simple and effective platform for hepatocyte generation from patient-specific human iPS cells. These patient-derived hepatocytes demonstrate that it is possible to model diseases whose phenotypes are caused by pathological dysregulation of key processes within adult cells.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME.

Patricio Godoy, +94 more
TL;DR: This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro and how closely hepatoma, stem cell and iPS cell–derived hepatocyte-like-cells resemble real hepatocytes.
Journal ArticleDOI

Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses

TL;DR: It was found that induction of cortical neuroepithelial stem cells from human ES cells and human iPS cells was dependent on retinoid signaling and human ES cell and iPS cell differentiation to cerebral cortex recapitulated in vivo development to generate all classes of cortical projection neurons in a fixed temporal order.
References
More filters
Journal ArticleDOI

Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.

TL;DR: Induction of pluripotent stem cells from mouse embryonic or adult fibroblasts by introducing four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES cell culture conditions is demonstrated and iPS cells, designated iPS, exhibit the morphology and growth properties of ES cells and express ES cell marker genes.
Journal ArticleDOI

Disease-Specific Induced Pluripotent Stem Cells

TL;DR: The generation of induced pluripotent stem cells from patients with a variety of genetic diseases with either Mendelian or complex inheritance are described, offering an unprecedented opportunity to recapitulate both normal and pathologic human tissue formation in vitro, thereby enabling disease investigation and drug development.
Journal ArticleDOI

Adapting proteostasis for disease intervention.

TL;DR: The proteostasis network is described, a set of interacting activities that maintain the health of proteome and the organism that has the potential to ameliorate some of the most challenging diseases of this era.
Journal ArticleDOI

Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons.

TL;DR: Induced pluripotent stem cells are generated from an 82-year-old woman diagnosed with a familial form of amyotrophic lateral sclerosis and were successfully directed to differentiate into motor neurons, the cell type destroyed in ALS.
Journal ArticleDOI

Derivation of pluripotent epiblast stem cells from mammalian embryos

TL;DR: It is shown that pluripotent stem cells can be derived from the late epiblast layer of post-implantation mouse and rat embryos using chemically defined, activin-containing culture medium that is sufficient for long-term maintenance of human embryonic stem cells.
Related Papers (5)