scispace - formally typeset
Search or ask a question
Institution

Ford Motor Company

CompanyDearborn, Michigan, United States
About: Ford Motor Company is a company organization based out in Dearborn, Michigan, United States. It is known for research contribution in the topics: Internal combustion engine & Signal. The organization has 36123 authors who have published 51450 publications receiving 855200 citations. The organization is also known as: Ford Motor & Ford Motor Corporation.


Papers
More filters
Journal ArticleDOI
TL;DR: The National Lung Screening Trial (NLST) is a randomized multicenter study comparing low-dose helical computed tomography with chest radiography in the screening of older current and former heavy smokers for early detection of lung cancer.
Abstract: The National Lung Screening Trial (NLST) is a randomized multicenter study comparing low-dose helical computed tomography (CT) with chest radiography in the screening of older current and former heavy smokers for early detection of lung cancer, which is the leading cause of cancer-related death in the United States Five-year survival rates approach 70% with surgical resection of stage IA disease; however, more than 75% of individuals have incurable locally advanced or metastatic disease, the latter having a 5-year survival of less than 5% It is plausible that treatment should be more effective and the likelihood of death decreased if asymptomatic lung cancer is detected through screening early enough in its preclinical phase For these reasons, there is intense interest and intuitive appeal in lung cancer screening with low-dose CT The use of survival as the determinant of screening effectiveness is, however, confounded by the well-described biases of lead time, length, and overdiagnosis Despite previous attempts, no test has been shown to reduce lung cancer mortality, an endpoint that circumvents screening biases and provides a definitive measure of benefit when assessed in a randomized controlled trial that enables comparison of mortality rates between screened individuals and a control group that does not undergo the screening intervention of interest The NLST is such a trial The rationale for and design of the NLST are presented

1,036 citations

Journal ArticleDOI
TL;DR: Scanned Bessel beams are used in conjunction with structured illumination and/or two-photon excitation to create thinner light sheets better suited to three-dimensional (3D) subcellular imaging.
Abstract: A key challenge when imaging living cells is how to noninvasively extract the most spatiotemporal information possible. Unlike popular wide-field and confocal methods, plane-illumination microscopy limits excitation to the information-rich vicinity of the focal plane, providing effective optical sectioning and high speed while minimizing out-of-focus background and premature photobleaching. Here we used scanned Bessel beams in conjunction with structured illumination and/or two-photon excitation to create thinner light sheets (<0.5 μm) better suited to three-dimensional (3D) subcellular imaging. As demonstrated by imaging the dynamics of mitochondria, filopodia, membrane ruffles, intracellular vesicles and mitotic chromosomes in live cells, the microscope currently offers 3D isotropic resolution down to ∼0.3 μm, speeds up to nearly 200 image planes per second and the ability to noninvasively acquire hundreds of 3D data volumes from single living cells encompassing tens of thousands of image frames.

1,007 citations

Journal ArticleDOI
TL;DR: A practical introduction to the field of hydrogen storage materials research is provided, with an emphasis on the properties necessary for a viable storage material, the computational and experimental techniques commonly employed in determining these attributes, and the classes of materials being pursued as candidate storage compounds.
Abstract: Widespread adoption of hydrogen as a vehicular fuel depends critically upon the ability to store hydrogen on-board at high volumetric and gravimetric densities, as well as on the ability to extract/insert it at sufficiently rapid rates As current storage methods based on physical means—high-pressure gas or (cryogenic) liquefaction—are unlikely to satisfy targets for performance and cost, a global research effort focusing on the development of chemical means for storing hydrogen in condensed phases has recently emerged At present, no known material exhibits a combination of properties that would enable high-volume automotive applications Thus new materials with improved performance, or new approaches to the synthesis and/or processing of existing materials, are highly desirable In this critical review we provide a practical introduction to the field of hydrogen storage materials research, with an emphasis on (i) the properties necessary for a viable storage material, (ii) the computational and experimental techniques commonly employed in determining these attributes, and (iii) the classes of materials being pursued as candidate storage compounds Starting from the general requirements of a fuel cell vehicle, we summarize how these requirements translate into desired characteristics for the hydrogen storage material Key amongst these are: (a) high gravimetric and volumetric hydrogen density, (b) thermodynamics that allow for reversible hydrogen uptake/release under near-ambient conditions, and (c) fast reaction kinetics To further illustrate these attributes, the four major classes of candidate storage materials—conventional metal hydrides, chemical hydrides, complex hydrides, and sorbent systems—are introduced and their respective performance and prospects for improvement in each of these areas is discussed Finally, we review the most valuable experimental and computational techniques for determining these attributes, highlighting how an approach that couples computational modeling with experiments can significantly accelerate the discovery of novel storage materials (155 references)

985 citations

Journal ArticleDOI
TL;DR: In this paper, high-pressure methane adsorption isotherms are compared to compare gravimetric and volumetric capacities, isosteric heat and usable storage capacities.
Abstract: Metal–organic frameworks have received significant attention as a new class of adsorbents for natural gas storage; however, inconsistencies in reporting high-pressure adsorption data and a lack of comparative studies have made it challenging to evaluate both new and existing materials. Here, we briefly discuss high-pressure adsorption measurements and review efforts to develop metal–organic frameworks with high methane storage capacities. To illustrate the most important properties for evaluating adsorbents for natural gas storage and for designing a next generation of improved materials, six metal–organic frameworks and an activated carbon, with a range of surface areas, pore structures, and surface chemistries representative of the most promising adsorbents for methane storage, are evaluated in detail. High-pressure methane adsorption isotherms are used to compare gravimetric and volumetric capacities, isosteric heats of adsorption, and usable storage capacities. Additionally, the relative importance of increasing volumetric capacity, rather than gravimetric capacity, for extending the driving range of natural gas vehicles is highlighted. Other important systems-level factors, such as thermal management, mechanical properties, and the effects of impurities, are also considered, and potential materials synthesis contributions to improving performance in a complete adsorbed natural gas system are discussed.

981 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a neutron interferometer to observe the quantum-mechanical phase shift of neutrons caused by their interaction with Earth's gravitational field, which is known as the Earth's magnetic field.
Abstract: We have used a neutron interferometer to observe the quantum-mechanical phase shift of neutrons caused by their interaction with Earth's gravitational field.

978 citations


Authors

Showing all 36140 results

NameH-indexPapersCitations
Anil K. Jain1831016192151
Markus Antonietti1761068127235
Christopher M. Dobson1501008105475
Jack Hirsh14673486332
Galen D. Stucky144958101796
Federico Capasso134118976957
Peter Stone130122979713
Gerald R. Crabtree12837160973
Douglas A. Lauffenburger12270555326
Abass Alavi113129856672
Mark E. Davis11356855334
Keith Beven11051461705
Naomi Breslau10725442029
Fei Wang107182453587
Jun Yang107209055257
Network Information
Related Institutions (5)
University of Michigan
342.3K papers, 17.6M citations

86% related

Pennsylvania State University
196.8K papers, 8.3M citations

84% related

University of California, Irvine
113.6K papers, 5.5M citations

84% related

Northwestern University
188.8K papers, 9.4M citations

83% related

University of Utah
124K papers, 5.2M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202237
2021766
20201,397
20192,195
20181,945
20171,995